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We refactor the universal law for the tensor product to express matrix multiplication as the 
product M · N of two matrices M and N thus making possible to use such matrix product 
to encode and transform algorithms performing matrix multiplication using techniques 
from linear algebra. We explore such possibility and show two stepwise refinements 
transforming the composition M · N into the Naïve and Strassen’s matrix multiplication 
algorithms.
The inspection of the stepwise transformation of the composition of matrices M · N into 
the Naïve matrix multiplication algorithm evidences that the steps of the transformation 
correspond to apply Gaussian elimination to the columns of M and to the lines of 
N therefore providing explicit evidence on why “Gaussian elimination is not optimal”, 
the aphorism serving as the title to the succinct paper introducing Strassen’s matrix 
multiplication algorithm.
Although the end results are equations involving matrix products, our exposition builds 
upon previous works on the category of matrices (and the related category of finite vector 
spaces) which we extend by showing: why the direct sum (⊕, 0) monoid is not closed, 
a biproduct encoding of Gaussian elimination, and how to further apply it in the derivation 
of linear algebra algorithms.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

A universal law is a central concept within the framework of category theory assuring the uniqueness and existence of 
certain mathematical constructs. In particular, the tensor product ⊗ universal law [1, Theorem 22] states that every bilinear 
map β : V × W → X is factorizable as the composition β = �σ � · ρ of a linear map �σ � : V ⊗ W → X after the tensor 
embedding ρ : V × W → V ⊗ W which combines a pair of inputs V × W , two spaces V and W , into a unique input, the 
tensor space V ⊗ W .

Matrix–matrix multiplication (MMM), the linear algebra operation at the heart of many other operations, which when 
applied to suitable matrices A and B , that is MMM(A, B), results in the matrix C = A × B , is a bilinear map and therefore 
is suitable for the application of the universal law for the tensor product. In other words, it is possible to factorize the 
operation MMM : Km×q × K

q×n → K
m×n as the composition of a unique linear map �σ � : Km×q ⊗ K

q×n → K
m×n after 

ρ : Km×q ×K
q×n → K

m×q ⊗K
q×n , the tensor embedding.
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As it is folklore, linear maps on finite dimensional vector spaces correspond to matrices [2], thus one could question: 
What is the matrix involved in matrix multiplication? In this paper we address such question by reformulating it as: What 
is a concrete matrix representation of the linear map �σ �? Furthermore, given that in the context of functions between sets 
one can define a function that composes functions: Could one define a matrix σ that multiplies matrices?

This paper shows how an answer may be given by refactoring the tensor product universal law which is synthetically 
encoded as the categorical diagram (21). The generic spaces V , W , and X , interpreted as types/objects of the maps/mor-
phisms β , �σ �, and ρ are instantiated with the MMM spaces: Km×q , Kq×n , and Km×n respectively. Furthermore, β is 
instantiated with MMM in the diagram (21) and we solve the equation encoded in it to calculate a matrix σ that repre-
sents the linear map �σ �.

Furthermore, the quest for such matricial representation of the linear map �σ � results in the factorization of MMM as 
the product of two matrices M · N , where M = σ and N = (vec A ⊗ vec B). Such representation makes it possible to encode 
and transform matrix algorithms applying basic linear algebra identities to the matrices σ and (vec A ⊗ vec B). In section 5
we explore such possibility and show matricial encodings and stepwise derivations of the algorithms performing Naïve (28)
and Strassen’s MMM (30).

The outcome of such derivations is beyond a pen and paper exercise on the derivation of matrix multiplication algorithms 
because through an inspection of the stepwise derivation of the Naïve algorithm performing MMM we explicitly find that 
such algorithm is the result of applying Gaussian Elimination (GE) to the columns of σ and to the lines of (vec A ⊗ vec B). 
Thus the derivation leads us into a fruitful insight into a cornerstone paper [3] on matrix multiplication algorithms.

Such paper was written by Volker Strassen, a famous German mathematician known for his work on the analysis of algo-
rithms and for introducing a MMM algorithm on square matrices with n lines and columns performing better — Strassen’s 
algorithm runs in O(n2.807) time — than its Naïve version — running in O(n3) time. Although the title “Gaussian elimina-
tion is not optimal” one does not find why, or an explicit connection between Gaussian elimination and the Naïve MMM

algorithm. The derivation in section 5 explicitly shows that the Naïve algorithm for MMM is obtained by applying Gaussian 
elimination, and as the Naïve MMM is not an optimal algorithm then the conclusion: GE is not optimal.

Our full exposition expands and relies on previous research effort [4–6] on the connection between the domain of 
category theory, linear algebra, and computer science. Regardless, we encourage the reader to translate the sequence denoted 
by �	 in equation (28) into a product of elementary matrices and to first understand how such matrix product is performing 
GE on the (vec A ⊗ vec B) lines. Only afterwards and after exercising the matrix product formulation of Strassen’s algorithm 
(30) using plain linear algebra we recommend delving into the full exposition expanding the research connecting category 
theory, linear algebra, and MMM algorithm derivation.

The full exposition is structured as follows: In section 2 we set up essential background and identities that are needed 
to understand and justify in a categorical setting the stepwise justifications. The text is mainly an adaptation of results 
from [4,5] that we develop showing why when equipped with the direct sum (⊕, 0) monoid the category defined lacks 
closing and thus not Cartesian closed, thus not Turing complete. In section 3 we improve the translation of the traditional 
specification of the GE in terms of elementary matrices into the biproduct framework, derive new lemmas (18), and novel 
notation to specify the column and line application of GE, equations (19) and (20), used in achieving the main results. In 
section 4 the tensor product universal law diagram is translated into an equation (27) encoding matrix multiplication in 
terms of a composition of two matrices. In section 5 we present a stepwise derivation of matrix multiplication algorithms, 
and as a byproduct we show how GE is related to the Naïve MMM algorithm. Then in section 6 we finish the exposition 
with some concluding remarks and possibilities for future work.

2. Background on the category of matrices

When dealing with matrices in a computational context we use a category where matrices are the morphisms and the 
objects transformed are natural numbers. We build upon the work in [5], but we chose not to depict matrices as arrows 
with right to left orientation. Although it makes sense to draw arrows backwards, due to the flow of matrix calculations, 
in a setting where we want to mingle matrices (linear functions) with common (non-linear) functions we opted to make 
morphism direction evolve.

The MatK category. The category of matrices has as objects natural numbers and morphisms the linear maps, we write an 
arrow n R m to denote a matrix which is traditionally denoted as an object in Km×n for a field K.

R =

⎡
⎢⎢⎣

r11 . . . r1n

...
. . .

...

rm1 . . . rmn

⎤
⎥⎥⎦

m×n

n R m

MatK enables to define the type of a matrix at the correct abstract level when dealing with the computational structure 
that does not depend on the ri j elements.2

2 Assuming the elements are dealt with atomic machine operations, the programmer’s task is to organize how to structure such operations.
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