
JID:JLAMP AID:123 /FLA [m3G; v1.180; Prn:30/06/2016; 14:58] P.1 (1-29)

Journal of Logical and Algebraic Methods in Programming ••• (••••) •••–•••

Contents lists available at ScienceDirect

Journal of Logical and Algebraic Methods in 

Programming
www.elsevier.com/locate/jlamp

Continuity as a computational effect

Renato Neves a,∗, Luis S. Barbosa a, Dirk Hofmann b, Manuel A. Martins b

a INESC TEC (HASLab) & Universidade do Minho, Portugal
b CIDMA – Dep. of Mathematics, Universidade de Aveiro, Portugal

a r t i c l e i n f o a b s t r a c t

Article history:
Received 2 July 2015
Received in revised form 28 May 2016
Accepted 31 May 2016
Available online xxxx

Keywords:
Monads
Components
Hybrid systems
Control theory

The original purpose of component-based development was to provide techniques to 
master complex software, through composition, reuse and parametrisation. However, such 
systems are rapidly moving towards a level in which software becomes prevalently 
intertwined with (continuous) physical processes. A possible way to accommodate the 
latter in component calculi relies on a suitable encoding of continuous behaviour as (yet 
another) computational effect.
This paper introduces such an encoding through a monad which, in the compositional 
development of hybrid systems, may play a role similar to the one played by 1+, 
powerset, and distribution monads in the characterisation of partial, nondeterministic
and probabilistic components, respectively. This monad and its Kleisli category provide a 
universe in which the effects of continuity over (different forms of) composition can be 
suitably studied.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Motivation and objectives

Component-based software development is often explained through a visual metaphor: a palette of computational units, 
and a blank canvas in which they are dropped and interconnected by drawing wires abstracting different composition and 
synchronisation mechanisms. More and more, however, components are not limited to traditional information processing 
units, but encapsulate some form of interaction with physical processes. The resulting systems, referred to as hybrid [1,2], 
exhibit a complex dynamics in which computations, coordination, and physical processes interact, become mutually con-
strained, and cooperate to achieve specific goals.

One generic way of looking at components, proposed in [3], emphasises an observational semantics, through a signature 
of observers and methods, that makes them amenable to a coalgebraic characterisation as (generalisations of) abstract Mealy 
machines. The resulting calculus is parametric on whatever behavioural model underlies a component specification. This 
captures, for example, partial, nondeterministic or probabilistic behaviour of a component’s dynamics by encoding such 
behavioural effects as strong monads [4] – a pervasive mathematical structure with surprising applications in different areas 
of Computer Science (see e.g., [5–9]).

Indeed, each monad captures a specific type of behaviour, which is then reflected in the corresponding component 
calculus. For example, maybe monad (1+) introduces partial components; the powerset (P) monad nondeterministic ones; 

* Corresponding author.
E-mail addresses: rjneves@inescporto.pt (R. Neves), lsb@di.uminho.pt (L.S. Barbosa), dirk@ua.pt (D. Hofmann), martins@ua.pt (M.A. Martins).

http://dx.doi.org/10.1016/j.jlamp.2016.05.005
2352-2208/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jlamp.2016.05.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jlamp
mailto:rjneves@inescporto.pt
mailto:lsb@di.uminho.pt
mailto:dirk@ua.pt
mailto:martins@ua.pt
http://dx.doi.org/10.1016/j.jlamp.2016.05.005


JID:JLAMP AID:123 /FLA [m3G; v1.180; Prn:30/06/2016; 14:58] P.2 (1-29)

2 R. Neves et al. / Journal of Logical and Algebraic Methods in Programming ••• (••••) •••–•••

and distribution monad (D) brings (discrete) probabilistic evolution into the scene. Can continuous behaviour, prevalent in 
hybrid systems and control theory, be encoded in a similar way, as (yet another) computational effect? Such is the question 
addressed in this paper.

Monads first came in contact to Computer Science in the 80’s, when E. Moggi proposed their use to structure the 
denotational semantics of programming languages [10,5]. Later the concept was introduced in programming practice by 
P. Wadler [6], leading to a rigorous style of combining purely functional programs that mimic impure (side-)effects. The 
key idea is that monads encode in abstract terms several kinds of computational effects, such as exceptions, state updating, 
nondeterminism or continuations. Such effects are represented by a type constructor T (an endofunctor over a suitable 
category) so that computations producing values of type O are regarded as terms of type TO . In this way values and 
computations are explicitly distinguished and programs can be thought of as arrows I → TO representing the computation 
of values of type O from values of type I , while producing some effect described by T. Or, putting it in a different way, 
output values are encapsulated (or embedded) in the effect specified by T. A monad comes equipped with an identity and an 
associative multiplication which, from a computational point of view, builds a (trivial) computation from a value, and flattens 
nested effects, respectively. Furthermore, if T is strong [6] additional machinery is available to distribute the computations’ 
effect over context. The monad structure allows program composition by handling the underlying computational effect 
through functor T and the flattening operation. Actually, each monad gives rise to a so called Kleisli category in which one 
may study the effects of the behavioural type (as specified by the monad) over different forms of composition; ultimately, 
this leads to rich component calculi (as discussed in [3]).

The current paper introduces a (strong) monad H that subsumes the typical continuous behaviour of dynamical, and 
hybrid systems. Intuitively, the type effect of H (i.e., the underlying endofunctor) represents the (continuous) evolution over 
time of some value in O ; the identity defines a trivial evolution (i.e., with duration zero), and the flattening operation allows 
the control of an evolution to be passed along different systems.

Moreover, the paper explores the corresponding Kleisli category as the mathematical space in which the underlying 
(continuous) behaviour can be isolated and its effect over different forms of composition suitably studied. As we will see in 
the sequel, such a category gives rise to several forms of composition operators (e.g., sequential, parallel execution), wiring
mechanisms, and synchronisation techniques. Again this parallels the role that the categories of partial functions, relations 
and stochastic matrices have as reasoning universes for component composition under the behavioural model provided, 
respectively, by monads 1+, P and D [11,12]. Similarly, this work paves the way to the development of a coalgebraic 
calculus of hybrid components in the spirit of [3].

1.2. A tribute to José Nuno Oliveira

The idea of regarding continuity as a computational effect, or more rigorously, a physical one, entailing a suitable notion 
of composition and a reasoning universe, in the form of a Kleisli category, owes much to the way José helped us to approach 
computational phenomena.

Building on the role of monads in functional programming and program calculi, as monadic inductive and coinductive 
schemes [13,14], José introduced us to monads both as a powerful structuring mechanism and a source of equally powerful 
genericity. An obsession for patterns and a sharp intuition for generic, conceptually reusable structures remain, after all, the 
hallmark of his illuminating, Socratic teaching.

In the late 1990’s, José supervised the PhD work of the second author on the coalgebraic calculus of state-based com-
ponents mentioned above [3]. This emerged from the conjunction of two key ideas; first, that a ‘black-box’ characterisation 
of software components favoured an observational, essentially coalgebraic, semantics; second, that the envisaged calculus 
had to be generic, in the sense that it should not depend on a particular notion of component behaviour. Monads, actu-
ally strong monads, were quickly identified as a source of such a genericity, the whole work boiling down to a calculus of 
monadic Mealy machines. Software components were thus studied as coalgebras (in a suitable category) typed as

S −→ T(S × O )I

where S represents the (internal) state space, and I , O are respectively the input and output spaces. T is a strong monad 
that captures the intended behavioural effect.

Being generic entailed the need for an equally generic reasoning framework. By then, the adoption of a pointfree, essen-
tially equational, calculational proof style, thus avoiding the somehow more standard coinductive proofs through the explicit 
construction of bisimulations, was understood as the price to be paid for genericity, as component laws were to be verified 
without fixing the working monad completely. Generic proofs performed in this style are clear and easy to follow, even if 
often long due to the systematic recording of almost all elementary steps.

For José, however, the way proofs are written is not a technicality. Proofs, as he taught us every day, are basically honest 
explanations, bearing evidence in a fixed formal context, and therefore must be conveyed in a crisp, clear, easily reproducible 
style, letting the underlying structure to emerge and helping to build the correct intuitions. Years later, in the context of a 
joint research project [15], José championed the use of calculational, pointfree reasoning as a way of reinvigorating the role 
of proof in elementary mathematical education. The pointfree style adopted in many proofs of this paper is also intended 
as a tribute to this view.



Download English Version:

https://daneshyari.com/en/article/4951444

Download Persian Version:

https://daneshyari.com/article/4951444

Daneshyari.com

https://daneshyari.com/en/article/4951444
https://daneshyari.com/article/4951444
https://daneshyari.com

