
JID:JLAMP AID:133 /FLA [m3G; v1.185; Prn:1/09/2016; 15:26] P.1 (1-18)

Journal of Logical and Algebraic Methods in Programming ••• (••••) •••–•••

Contents lists available at ScienceDirect

Journal of Logical and Algebraic Methods in 

Programming
www.elsevier.com/locate/jlamp

Join inverse categories and reversible recursion ✩

Robin Kaarsgaard ∗, Holger Bock Axelsen, Robert Glück

DIKU, Department of Computer Science, University of Copenhagen, Denmark

a r t i c l e i n f o a b s t r a c t

Article history:
Received 31 January 2016
Received in revised form 14 August 2016
Accepted 16 August 2016
Available online xxxx

Keywords:
Reversible computing
Recursion
Categorical semantics
Enriched category theory

Recently, a number of reversible functional programming languages have been proposed. 
Common to several of these is the assumption of totality, a property that is not necessarily 
desirable, and certainly not required in order to guarantee reversibility. In a categorical 
setting, however, faithfully capturing partiality requires handling it as additional structure. 
Recently, Giles studied inverse categories as a model of partial reversible (functional) 
programming. In this paper, we show how additionally assuming the existence of countable 
joins on such inverse categories leads to a number of properties that are desirable when 
modeling reversible functional programming, notably morphism schemes for reversible 
recursion, a †-trace, and algebraic ω-compactness. This gives a categorical account of 
reversible recursion, and, for the latter, provides an answer to the problem posed by Giles 
regarding the formulation of recursive data types at the inverse category level.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Reversible computing, that is, the study of computations that exhibit both forward and backward determinism, origi-
nally grew out of the thermodynamics of computation. Landauer’s principle states that computations performed by some 
physical system (thermodynamically) dissipate heat when information is erased, but that no dissipation is entailed by 
information-preserving computations [3]. This has motivated a long study of diverse reversible computation models, such as 
logic circuits [4], Turing machines [5,6], and many forms of restricted automata models [7,8]. Reversibility concepts are im-
portant in quantum computing, but are increasingly seen to be of interest in other areas as well, including high-performance 
computing [9], process calculi [10], and even robotics [11,12].

In this paper we concern ourselves with the categorical underpinnings of reversible functional programming languages. 
At the programming language level, reversible languages exhibit interesting program properties, such as easy program in-
version [13]. Now, most reversible languages are stateful, giving them a fairly straightforward semantic interpretation [14]. 
While functional programs are usually easier to reason about at the meta-level, they do not have the concept of state that 
imperative languages do, making their semantics interesting objects of study.

Further, many reversible functional programming languages (such as Theseus [15] and the �-family of combinator cal-
culi [16]) come equipped with a tacit assumption of totality, a property that is neither required [6] nor necessarily desirable 
as far as guaranteeing reversibility is concerned. Shedding ourselves of the “tyranny of totality,” however, requires us to 
handle partiality explicitly as additional categorical structure.

✩ This is an extended version of an abstract presented at NWPT 2015 [1] and a paper presented at FoSSaCS 2016 [2], elaborated with full proofs, additional 
examples, and more comprehensive background.

* Corresponding author.
E-mail addresses: robin@di.ku.dk (R. Kaarsgaard), funkstar@di.ku.dk (H.B. Axelsen), glueck@di.ku.dk (R. Glück).

http://dx.doi.org/10.1016/j.jlamp.2016.08.003
2352-2208/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jlamp.2016.08.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jlamp
mailto:robin@di.ku.dk
mailto:funkstar@di.ku.dk
mailto:glueck@di.ku.dk
http://dx.doi.org/10.1016/j.jlamp.2016.08.003


JID:JLAMP AID:133 /FLA [m3G; v1.185; Prn:1/09/2016; 15:26] P.2 (1-18)

2 R. Kaarsgaard et al. / Journal of Logical and Algebraic Methods in Programming ••• (••••) •••–•••

One approach which does precisely that is inverse categories, as studied by Cockett and Lack [17] as a specialization of 
restriction categories, which have recently been suggested and developed by Giles [18] as models of reversible (functional) 
programming. In this paper, we will argue that assuming ever slightly more structure on these inverse categories, namely 
the presence of countable joins of parallel morphisms [19], gives rise to a number of additional properties useful for modeling
reversible functional programming. Notably, we obtain two different notions of reversible recursion (exemplified in the two 
different reversible languages rfun and Theseus), and an account of recursive data types (via algebraic ω-compactness with 
respect to structure-preserving functors), which are not present in the general case. This is done by adopting two different, 
but complementary, views on inverse categories with countable joins as enriched categories – as DCPO-categories, and as 
(specifically �Mon-enriched) strong unique decomposition categories [20,21].

Overview. We give a brief introduction to reversible functional programming, specifically to the languages of rfun [22]
and Theseus [15], in Section 2, and present the necessary background on restriction and inverse categories in Section 3. 
In Section 4 we show that inverse categories with countable joins are DCPO-enriched, which allows us to demonstrate the 
existence of (reversible!) fixed points of both morphism schemes and structure-preserving functors. In Section 5 we show 
that inverse categories with countable joins and a join-preserving disjointness tensor are (strong) unique decomposition 
categories equipped with a uniform †-trace. Section 6 gives conclusions and directions for future work.

2. On reversible functional programming

In this section, we give a brief introduction to reversible functional programming, specifically to the languages of rfun

and Theseus. For more comprehensive accounts of these languages, including syntax, semantics, program inversion, further 
examples, and so on, see [22] respectively [15].

Reversible programming deals with the construction of programs that are deterministic not just in the forward direction 
(as any other deterministic program), but also in the backward direction. A central consequence of this property is that 
well-formed programs must have both uniquely defined forward and backward semantics, with backward semantics given 
either directly or indirectly (e.g., as is often done, by providing a textual translation of terms into terms which carry their 
inverse semantics; this approach is related to program inversion [23,24]). In the case of reversible functional programming, 
reversibility is accomplished by guaranteeing local (forward and backward) determinism of evaluation – which, in turn, 
leads to global (forward and backward) determinism. Though reversible functions are injective [6], injectivity itself (a global
property) is not enough to guarantee reversibility (a local property) – specifically, locally reversible control structures are 
necessary [22].

One such reversible functional programming language is rfun, developed in recent years by Yokoyama, Axelsen, and 
Glück [22]. rfun is an untyped language that uses Lisp-style symbols and constructors for data representation. Programs 
in rfun are first-order functions, in which bound variables must be linearly used (though patterns are not required to be 
exhaustive). To account for the fact that data duplication can be performed reversibly, a duplication-equality operator [25], 
defined as follows, is used:

�〈x〉� = 〈x, x〉
�〈x, y〉� =

{ 〈x〉 if x = y
〈x, y〉 otherwise

In the first case, the application of �·� to the unary tuple 〈x〉 yields the binary tuple 〈x, x〉, that is, the value x is 
duplicated. In the second case, when x = y, the application to 〈x, y〉 joins two identical values into 〈x〉; otherwise, the 
two values are returned unchanged (two different values cannot have been obtained by duplication of one value). Using 
an explicit operator simplifies reverse computation because the duplication of a value in one direction requires an equality 
check in the other direction, and vice versa. Instead of using a variable twice to duplicate a value, the duplication is made 
explicit. The operator is self-inverse, e.g., ��〈x〉�� = 〈x〉 and ��〈x, y〉�� = 〈x, y〉.

The only control structure available in rfun is a reversible case-expression employing the symmetric first-match policy: 
The control expression is matched against the patterns in the order they are given (as in, e.g., the ML-family of languages), 
but, for the case-expression to be defined, once a match is found, any value produced by the matching branch must not
match patterns that could have been produced by a previous branch. This policy guarantees reversibility. Perhaps surprising 
is the fact that recursion works in rfun completely analogously to the way it works irreversibly; i.e., using a call stack. In 
particular, inversion of recursive functions is handled simply by replacing the recursive call with a call to the inverse, and 
inverting the remainder of the function body. As such, the inverse of a recursive function is, again, a recursive function. This 
point will prove important later on.

An example of an rfun program for computing Fibonacci-pairs is shown in Fig. 1 [22,25]: Given a natural number n
encoded in unary, fib(n) produces the pair 〈 fn+1, fn+2〉 where f i is the unary encoding of the i’th Fibonacci number. Notice 
the use of the duplication operator in the definition of plus: The duplication-equality operator on the right-hand side of 
the first branch of plus duplicates 〈x〉 into 〈x, x〉 in the forward direction, and checks the equality of two values 〈x, y〉 in 
the backward direction. This accounts for the fact that the first branch of plus always returns two identical values, while 
the second branch always returns two different values. The first-match policy of rfun described above guarantees the 
reversibility of the auxiliary function plus, which is defined by plus 〈x, y〉 = 〈x, x + y〉.



Download English Version:

https://daneshyari.com/en/article/4951454

Download Persian Version:

https://daneshyari.com/article/4951454

Daneshyari.com

https://daneshyari.com/en/article/4951454
https://daneshyari.com/article/4951454
https://daneshyari.com

