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The notion of operational termination provides a logic-based definition of termination 
of computational systems as the absence of infinite inferences in the computational 
logic describing the operational semantics of the system. For Conditional Term Rewriting 
Systems we show that operational termination is characterized as the conjunction of two
termination properties. One of them is traditionally called termination and corresponds to 
the absence of infinite sequences of rewriting steps (a horizontal dimension). The other 
property, that we call V -termination, concerns the absence of infinitely many attempts 
to launch the subsidiary processes that are required to perform a single rewriting step (a 
vertical dimension). We introduce appropriate notions of dependency pairs to characterize 
termination, V -termination, and operational termination of Conditional Term Rewriting 
Systems. This can be used to obtain a powerful and more expressive framework for proving 
termination properties of Conditional Term Rewriting Systems.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Conditional Term Rewriting Systems (CTRSs [6,11,24]) extend Term Rewriting Systems (TRSs [5,36,41]) by adding a (pos-
sibly empty) conditional part c to each rewrite rule � → r, thus obtaining a conditional rewrite rule � → r ⇐ c. The addition of 
such conditional parts c substantially increases the expressiveness of programming languages that use them (e.g., ASF+SDF
[8], CafeOBJ [15], ELAN [7], Haskell [23], OBJ [19], or Maude [9]) and often clarifies the purpose of the rules to make 
programs more readable and self-explanatory. For instance, in functional programs, the use of guards and local definitions
(by means of where clauses) is customary.

Example 1. The following Haskell program implements the well-known quicksort algorithm [36, Section 1]:

split x [] = ([],[])
split x (y:ys)

| x <= y = (xs,y:zs)
| otherwise = (y:xs,zs)
where (xs,zs) = split x ys
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qsort [] = []
qsort (x:xs) = qsort ys ++ (x:qsort zs)

where (ys,zs) = split x xs

This program can be understood as a CTRS (borrowing from [36, Section 1]; we have added rules to compare natural 
numbers in Peano’s notation (with leq), and for implementing Haskell’s appending operator ++ for lists with app):

leq(0, x) → true (1)

leq(s(x),0) → false (2)

leq(s(x), s(y)) → leq(x, y) (3)

app(nil, xs) → xs (4)

app(cons(x, xs), ys) → cons(x,app(xs, ys)) (5)

split(x,nil) → pair(nil,nil) (6)

split(x, cons(y, ys)) → pair(xs, cons(y, zs)) (7)

⇐ leq(x, y) → true, split(x, ys) → pair(xs, zs)

split(x, cons(y, ys)) → pair(cons(y, xs), zs) (8)

⇐ leq(x, y) → false, split(x, ys) → pair(xs, zs)

qsort(nil) → nil (9)

qsort(cons(x, xs)) → app(qsort(ys), cons(x,qsort(zs))) (10)

⇐ split(x, xs) → pair(ys, zs)

Note the following:

1. a guard b in the Haskell program (e.g., x <= y and otherwise, which here means that the condition x <= y does 
not hold) is translated as a boolean test b →∗ true or b →∗ false. The intended meaning is that the boolean expression 
b is evaluated by rewriting (in zero or more steps, denoted as →∗) and then the outcome is checked to see whether it 
is true or false, respectively.

2. where clauses defining pattern matching conditions p = e for an expression e whose value is matched against a pattern 
p are translated as rewriting conditions e →∗ p. The intended meaning is that e will be evaluated and the outcome 
matched against p. In this way, variables in p become instantiated to expressions which are then used in the right-hand 
side of the rule to return the final result of the computation. Thus, part of such a computation is accomplished in the 
conditional part of the rules.

The example illustrates two practical uses of conditional rules when defining functions:

1. Testing boolean conditions before applying a rule, as in (7) and (8).
2. Local reductions of specific expressions followed by matching against a pattern in order to obtain pieces of information 

which can be used to build the outcome as in rules (7), (8), and (10).

Although several transformations have been envisaged to remove the conditional part of the rules, thus yielding an ‘equiv-
alent’ TRS (see [31,35,37,39] and the references therein), programmers still find conditional rules valuable when writing 
programs in the aforementioned languages.

1.1. Termination, V -termination, and operational termination of CTRSs

The semantics of rewriting-based computational systems is often described by means of the transitions induced by the 
rewriting steps. The one-step rewriting relation →R on terms induced by a CTRS R is the basis to describe any accomplished 
evaluation or transformation of expressions. In this setting, the absence of infinite rewrite sequences t1 →R t2 →R · · · arises 
as a natural definition of terminating behavior for CTRSs. However, computations with CTRSs with rules � → r ⇐ s1 →
t1, . . . , sn → tn (i.e., the conditional part of a rule consists of a sequence of pairs si → ti , for 1 ≤ i ≤ n) are defined by means 
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