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We propose a novel technique that reduces the decision problem of WSnS (weak monadic 
second-order logic with n successors) to the problem of evaluation of Complex-value 
Datalog queries. We then show how the use of advanced implementation techniques for 
Logic Programs, in particular the use of tabling in the XSB system, yields a considerable 
improvement in performance over more traditional approaches. We also explore various 
optimizations of the proposed technique based on variants of tabling and goal reordering. 
Although our primary focus is on WS1S, the logic of single successor, we show that it 
is straightforward to adapt our approach for other logics with existing automata-theoretic 
decision procedures, for example WS2S.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Monadic second-order logics provide means to specify regular properties of systems in a succinct way. In addition, these 
logics are decidable by virtue of the connection to automata theory [1,2]. However, only recently tools based on these ideas—
in particular the MONA system [3]—have been developed and shown to be efficient enough for practical applications [4].

However, for reasoning in large theories consisting of relatively simple constraints, such as theories capturing UML class 
diagrams or database schemata, the MONA system runs into a serious state-space explosion problem—the size of the au-
tomaton capturing the (language of) models for a given formula quickly exceeds the space available in most computers. 
The problem can be traced to the automata product operation that is used to translate conjunctions in the original for-
mulæ rather than to the theoretically more problematic projection/determinization operations needed to handle quantifier 
alternations.

This paper introduces a technique that combats this problem. Unlike most other approaches that usually attempt to 
use various compact representation techniques for automata, e.g., based on BDDs [5] or on state space factoring using 
a guided automaton [3], our approach is based on techniques developed for query evaluation in deductive databases, in 
particular on the Magic Set transformation [6] and the SLG resolution, a top-down resolution-based approach augmented with 
memoization [7,8]. We also study the impact of using other optimization techniques developed for Logic Programs, such as 
goal reordering.

The main contribution of the paper is establishing the connection between the automata-based decision procedures 
for WS1S (and, analogously, for WS2S) and query evaluation in Complex-value Datalog (Datalogcv) which is equivalent to 
the complex-value calculus in expressive power [9]. Indeed, the complexity of query evaluation in Datalogcv matches the 
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complexity of the WS1S decision procedure and thus it seems like an appropriate tool for this task. Our approach is based on 
representing automata using nested relations and on defining the necessary automata-theoretic operations using Datalogcv

programs. This reduces the satisfiability of a WSnS formula to posing a closed Datalogcv goal over a Datalogcv program 
representing implicitly the final automaton. The query checks if there is a path from the starting state to a final state on 
the automaton using the Datalogcv representation of the automaton and the transitive closure of its transition relation. This 
observation combined with powerful program execution techniques developed for deductive databases, such as the Magic 
Set rewriting and SLG resolution, in many cases limits the explored state space to elements needed to show non-emptiness 
of the automaton and, in turn, satisfiability of the corresponding formula. The use of magic sets and/or SLG resolution 
automatically transforms the transitive closure query into a reachability query. Hence, the use of these techniques allows us 
to compute only the relevant parts of the automaton in a goal-driven way.

In addition to showing the connection between the automata-based decision procedures and query evaluation in 
Datalogcv, we also conduct experiments with the XSB [10] system that demonstrate the benefits of the proposed method 
over more standard approaches. Note that we use XSB solely as an implementation vehicle for our experiments; any system 
that is capable of evaluating Datalogcv queries can be used for the implementation of our method.

This method can be used for reasoning on formulas on large theories, such as those corresponding to UML diagrams and 
database schemata consisting of relatively simple constraints or certain Description Logic formalisms where the constraints 
or formulas can be mapped to weak monadic second-order logic formulas.

The work we present in this paper is an extension of [11] and [12] with correctness proofs of our method, and extended 
experiments and heuristics. The remainder of the paper is organized as follows. In Section 2 we formally introduce the weak 
monadic second-order logic and the connection to finite automata. We also define Datalogcv programs, state their computa-
tional properties, and briefly discuss techniques used for program evaluation. Section 3 shows how Datalogcv programs can 
be used to implicitly represent a finite automaton and to implement automata-theoretic operations on such a representation 
for the WS1S logic. The results are extended to WS2S in Section 4. Heuristics and optimizations for the proposed methods 
are presented in Section 5. Related work is discussed in Section 6. Finally, conclusions and future research directions are 
given in Section 7.

2. Background and definitions

In this section we provide definitions needed for the technical development in the rest of the paper.

2.1. Logics

First, we define the syntax and semantics of the monadic second-order logic of one and two successors.

Definition 1. Let Var = {x, y, z, . . .} be a (countably infinite) set of variable names. Formulas of second-order logics are 
defined as follows.

• the expressions si(x, y), x ⊆ y for x, y second-order variables are atomic formulas (standing intuitively for the successor 
relations and the subset relation), and

• given formulas ϕ and φ and a variable x, the expressions ϕ ∧ φ, ¬ϕ , and ∃x : ϕ are also formulas.

As variables for individuals (first-order variables) can be simulated using second-order variables bound to singleton sets, 
a property expressible in WS1S, we allow writing x ∈ y for x ⊆ y whenever we know that x is a singleton. We also use the 
standard abbreviations ϕ ∨ ψ for ¬(¬ϕ ∧ ¬ψ), ϕ → ψ for ¬ϕ ∨ ψ , and ∀x : ϕ for ¬∃x : ¬ϕ .

Weak monadic second order logics restrict variables to be interpreted as finite sets. Hence, quantification is allowed 
only over unary relations (i.e.: sets). The semantics of WS1S is defined w.r.t. the set of natural numbers (successors of 0); 
second-order variables are interpreted as finite sets of natural numbers in WS1S. The interpretation of the atomic formula 
s(x, y) is fixed to relating singleton sets {n} and {n + 1}, n ∈ N.1 Similarly, the semantics of WS2S is defined over an infinite 
binary tree T =(0 + 1)∗ = {ε , 0, 1, 00, 01, 10, 11, 000, ...}; first-order variables are interpreted as nodes of the binary tree, 
and second order variables are interpreted as finite subsets of the nodes in WS2S. Since general trees can be converted to 
binary trees our results for WS2S can be extended to WSnS.

Definition 2. The definition of truth of a formula is defined over a transition system T (over N in WS1S and over T in 
WS2S). A valuation is defined as D : Var → 2Q where Q = N in WS1S, Q = T in WS2S, and 2Q is the collection of all finite 
subsets of Q. Given a valuation D and a transition system T we have:

• T ,D |
 x ⊆ y if D(x) ⊆ D(y)

• T ,D |
 si(x, y) if D(x) and D(y) are singletons {sx}, {sy} and sy is the ith successor of sx

1 The atomic formula s(x, y) is often written as y = s(x) in the literature, emphasizing its nature as a successor function.
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