
J. Parallel Distrib. Comput. 111 (2018) 65–75

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Accelerating distributed Expectation–Maximization algorithms with
frequent updates✩

Jiangtao Yin a,*, Yanfeng Zhang b, Lixin Gao a

a University of Massachusetts Amherst, 151 Holdsworth Way, Amherst, MA 01003, USA
b Northeastern University, 11 Wenhua Road, Shenyang, Liaoning 110819, China

h i g h l i g h t s

• Propose two approaches to parallelize EM algorithms with frequent updates in a distributed environment to scale to massive data sets.
• Prove that both approaches maintain the convergence properties of the EM algorithms.
• Design and implement a distributed framework to support the implementation of frequent updates for the EM algorithms.
• Extensively evaluate our framework on both a cluster of local machines and the Amazon EC2 cloud with several popular EM algorithms.
• The EM algorithms with frequent updates implemented on our framework can converge much faster than traditional implementations.

a r t i c l e i n f o

Article history:
Received 29 December 2016
Received in revised form 1 June 2017
Accepted 20 July 2017
Available online 29 July 2017

Keywords:
Expectation–Maximization
Frequent updates
Concurrent updates
Distributed framework
Clustering
Topic modeling

a b s t r a c t

Expectation–Maximization (EM) is a popular approach for parameter estimation in many applications,
such as image understanding, document classification, and genome data analysis. Despite the popularity
of EM algorithms, it is challenging to efficiently implement these algorithms in a distributed environment
for handling massive data sets. In particular, many EM algorithms that frequently update the parameters
have been shown to be muchmore efficient than their concurrent counterparts. Accordingly, we propose
two approaches to parallelize such EM algorithms in a distributed environment so as to scale to massive
data sets. We prove that both approaches maintain the convergence properties of the EM algorithms.
Based on the approaches, we design and implement a distributed framework, FreEM, to support the
implementation of frequent updates for the EMalgorithms.We show its efficiency through two categories
of EM applications, clustering and topic modeling. These applications include k-means clustering, fuzzy
c-means clustering, parameter estimation for the Gaussian Mixture Model, and variational inference for
LatentDirichlet Allocation.Weextensively evaluate our framework onboth a cluster of localmachines and
the Amazon EC2 cloud. Our evaluation shows that the EM algorithmswith frequent updates implemented
on FreEM can converge much faster than those implementations with traditional concurrent updates.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Discovering knowledge from a large collection of data sets is
one of the most fundamental problems in many applications, such
as image understanding, document classification, and genomedata
analysis. Expectation–Maximization (EM) [8] is one of the most
popular approaches in these applications [5,9,32]. It estimates
parameters for hidden variables by maximizing the likelihood. EM
is an iterative approach that alternates between performing an

✩ Part of this work has been published in Proceedings of CLUSTER’12: 2012 IEEE
International Conference on Cluster Computing (Yin et al., 2012).

* Corresponding author.
E-mail addresses: jyin@ecs.umass.edu (J. Yin), zhangyf@cc.neu.edu.cn

(Y. Zhang), lgao@ecs.umass.edu (L. Gao).

Expectation step (E-step), which computes the distribution for the
hidden variables using the current estimates for the parameters,
and a Maximization step (M-step), which re-estimates parameters
to be those maximizing the likelihood found in the E-step.

Due to the popularity, many methods for accelerating EM al-
gorithms have been proposed. Some of them [18,21] show that a
partial E-step may accelerate convergence. Such a partial E-step
selects only a subset of data points for computing the distribution.
The advantage of the partial E-step is to allow the M-step to be
performed more frequently, so that the algorithm can leverage
more up-to-date parameters to process data points and potentially
accelerates convergence. Intuitively, updating the parameters fre-
quentlymight incur additional overhead. However, the parameters
typically depend on statistics of data sets, which can be computed

http://dx.doi.org/10.1016/j.jpdc.2017.07.005
0743-7315/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jpdc.2017.07.005
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2017.07.005&domain=pdf
mailto:jyin@ecs.umass.edu
mailto:zhangyf@cc.neu.edu.cn
mailto:lgao@ecs.umass.edu
http://dx.doi.org/10.1016/j.jpdc.2017.07.005

66 J. Yin et al. / J. Parallel Distrib. Comput. 111 (2018) 65–75

incrementally. That is, the cost of computing statistics grows lin-
early with the number of data points whose statistics have been
changed in the E-step. As a result, performing frequent updates
on the parameters does not necessarily introduce considerable
additional cost. We refer to the EM algorithm that updates the
parameters frequently as the EM algorithm with frequent updates.
In contrast, the traditional EM algorithm, which computes the
distribution for all data points and then updates the parameters,
is referred to as the EM algorithm with concurrent updates.

Despite the fact that the EM algorithm with frequent updates
has the potential to speedup convergence, parallelizing it can be
challenging. Although computing the distribution and updating
statistics can be performed concurrently, parameters such as cen-
troids of clusters are global parameters. Updating these global
parameters has to be performed in a centralized location and all
workers have to be synchronized. Synchronization in a distributed
environmentmay incur considerable overhead. Therefore,we have
to control the frequency of parameter updates to achieve a good
performance.

In this paper, we propose two approaches to parallelize the
EM algorithmwith frequent updates in a distributed environment:
partial concurrent and subrange concurrent. In the partial concur-
rent approach, each E-step processes only a block of data points.
The size of a block controls the frequency of parameter updates.
In the subrange concurrent approach, each E-step computes the
distribution in a subrange of hidden variables instead of the whole
range. The subrange size candetermine the frequency of parameter
updates.We prove that both approachesmaintain the convergence
properties of EM algorithms.We control the parameter update fre-
quency by setting the block/subrange size, and provide strategies
to determine the optimal values. Additionally, both approaches can
scale to any number of workers/processors.

We design and implement a distributed framework, FreEM,
for implementing the EM algorithm with frequent updates based
on the two proposed approaches. FreEM eases the process of
programming EM algorithms in a distributed environment. Pro-
grammers only need to specify the E-step and the M-step. The
detailed mechanisms, such as data distribution, communication
among workers, and frequency of M-step, are all handled auto-
matically. As a result, it facilitates the process of implementing
EM algorithms and accelerates the algorithms through frequent
updates. We evaluate FreEM in the context of a wide class of
well-known EM applications: k-means clustering, fuzzy c-means
clustering, parameter estimation for the Gaussian Mixture Model,
and Latent Dirichlet Allocation for topic modeling. Our results
show that the EM algorithm with frequent updates can run much
faster than that with traditional concurrent updates. In addition,
EM algorithms can be implemented on FreEM in a more efficient
way than on Hadoop [13], an open source implementation of the
popular programming model MapReduce [7].

The rest of this paper is organized as follows. Section 2 describes
the EM algorithm with frequent updates. Section 3 exemplifies
frequent updates through EM applications. Section 4 presents our
approaches to parallelize the EM algorithmwith frequent updates.
In Section 5, we present the design, implementation and API of
FreEM. Section 6 is devoted to the evaluation results. Finally, we
discuss related work in Section 7 and conclude the paper in Sec-
tion 8.

2. EM algorithms

In a statistical model, suppose that we have observed the value
of one random variable, X , which comes from a parameterized
family, P(X |θ). The value of another variable, Z , is hidden. Given
the observed data, we wish to find θ such that P(X |θ) is the
maximum. In order to estimate θ , it is typical to introduce the

log likelihood function: L(θ) = log P(X |θ). Suppose the data
consists of n independent data points {x1, . . . , xn}, and thereby
the hidden variable can be decomposed as {Z1, Z2, . . . , Zn}. Then,
L(θ) =

∑n
i=1 log P(xi|θ). We assume that Z has a finite range for

simplicity, but the result can be generalized. Thus, the probability
P(xi|θ) can be written in terms of possible value (zi) of the hidden
variable Zi as: P(xi|θ) =

∑
zi
P(xi, zi|θ).When it is hard tomaximize

L(θ) directly, an EM algorithm is usually used to maximize L(θ)
iteratively.

The EM algorithm leverages an iterative process to maxi-
mize L(θ). Each iteration consists of an E-step and a M-step. The
E-step leverages the data points and the current estimates of the
parameters to estimate the distribution of hidden variables. TheM-
step updates the parameters to be thosemaximizing the likelihood
found in the E-step.

One classic example of the EM algorithm is k-means cluster-
ing [16]. It aims to partition n data points {x1, x2, . . . , xn} into k
(k ≤ n) clusters {c1, c2, . . . , ck} so as to minimize the objective
function:

f =

k∑
i=1

∑
xj∈ci

∥xj − µci∥
2, (2.1)

where µci =
1

|ci|

∑
xj∈ci

xj is the centroid of cluster ci.
The E-step of k-means assigns points to the cluster with the

closest mean. That is, a data point xj is assigned to cluster c if c =

argminj∥xi − µcj∥
2. Its M-step updates the centroids (parameters)

for all clusters.

2.1. The EM algorithm with concurrent updates

The EM algorithm with concurrent updates computes the dis-
tribution for all data points in its E-step. Formally, let Qi be some
distribution over zi (

∑
zi
Qi(zi) = 1, Qi(zi) ≥ 0). Such an EM

algorithm starts with some initial guess at the parameters θ (0), and
then seeks to maximize L(θ) by iteratively applying the following
two steps:

E-step: For each xi ∈ X , set Qi(zi) = P(zi|xi, θ (t−1)).
M-step: Set θ (t) to be the θ that maximizes∑n
i=1EQi [log P(xi, zi|θ)].

Here, the expectation EQi is taken with respect to the distribu-
tion Qi(·) over the range of Z in the E-step.

The vanilla k-means (Lloyd’s algorithm [15]) belongs to this
category. Its E-step performs cluster assignment for each data
point, and it M-step updates the centroids along the direction of
minimizing the objective function.

2.2. The EM algorithm with frequent updates

The EM algorithmwith frequent updates attempts to accelerate
the convergence by frequently updating the parameters. This al-
gorithm can provide more up-to-date parameters to process data
points and to potentially speedup convergence. However, updating
parameters frequentlymay incur significant overhead if the update
is done in the original way. In order to conquer this obstruction,
we introduce a way of updating parameters incrementally. In the
EM algorithm, the distribution influences the likelihood of the
parameters via some sufficient statistics. The statistics is usually
the summation over the statistics on each individual data point,
and a summation can be incrementally updated. As a result, the
cost of computing the sufficient statistics grows linearly with the
number of data points whose statistics have been changed in the
E-step.

Take k-means for instance. Let Si (Si =
∑

xj∈ci
xj) and Wi (Wi =

|ci|) be the statistics. The centroid of one cluster (e.g., i) can be easily

Download English Version:

https://daneshyari.com/en/article/4951505

Download Persian Version:

https://daneshyari.com/article/4951505

Daneshyari.com

https://daneshyari.com/en/article/4951505
https://daneshyari.com/article/4951505
https://daneshyari.com

