
J. Parallel Distrib. Comput. 111 (2018) 115–125

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

A rapid detection algorithm of corrupted data in cloud storage
Guangwei Xu *, Zhifeng Sun, Cairong Yan, Yanglan Gan
School of Computer Science and Technology, Donghua University, Shanghai 201620, China

h i g h l i g h t s

• A rapidly detecting algorithm based on three-dimensional data locating is proposed.
• The consistent hash is utilized to balance the computation cost.
• The cube splitting is applied to locate the corrupted blocks.
• Data concatenated and data blind technology are utilized in detection process.

a r t i c l e i n f o

Article history:
Received 5 May 2016
Received in revised form 22 October 2016
Accepted 13 August 2017
Available online 18 August 2017

MSC 2010:
00-01
99-00

Keywords:
Cloud storage
Data integrity verification
Corrupted data detecting
Cube-based hierarchical verification

a b s t r a c t

The cloud computing provides dynamically scalable and virtualized resource service for users to access the
storage data. Although having been bringing enormous convenience, it also incurs the threat of users’ data
loss or corruption, such as data intentionally deleted or corrupted, the service providers’ hardware error
and careless operation. Most of the data verification schemes based POR or PDP are proposed to verify the
integrity of a data block or even a batch of data blocks. However, once the batch verification fails, it results
in that all the blocks in the batch of data cannot be judged to be intact or corrupted since the corrupted
blocks are not accurately identified. To improve the efficiency of corrupted data identified, we propose
a rapid detection algorithm of corrupted data based on three-dimensional data locating, which is called
cube-based detection. Furthermore, the consistent hash is utilized to balance the computation cost, and
the cube splitting is applied to locate the corrupted blocks bynarrowing the range of suspicious blocks step
by step. Finally, both data hierarchically concatenated and data blind technology are utilized to improve
the verification efficiency and preserve users’ data privacy in the detection process. Theoretic analysis
and simulation results demonstrate that our algorithm has strong detection capability and identification
capability for all the corrupted blocks, and greatly decreases the cost of verification data transmission and
computation.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Cloud computing offers dynamic and scalable virtualized re-
sources and services via the Internet, and provides a new model
to big data storage and management. A growing number of data
are stored in cloud service providers (CSP), which offer great con-
venience for data access, but data owners (DO) also lose effective
control over their data. Especially when the data are stored in
untrusted CSP, DO often suffers the threat of data loss or corrup-
tion (collectively referred to as data corruption). Data integrity
verification has become an important technology to solve this
problem [15]. The technology detects whether data are corrupted
by service providers’s hardware error or careless operation, and

* Corresponding author.
E-mail addresses: gwxu@dhu.edu.cn (G. Xu), china-firstszf1989@163.com

(Z. Sun), cryan@dhu.edu.cn (C. Yan), yanglan.gan@gmail.com (Y. Gan).

an adversary malicious attacks on the data integrity [9,23], and
prevents CSP from concealing the data corruption [11].

Traditional data verification techniques such as hash (e.g., MD5)
and digital signature (e.g., RSA) need to download remote data to
the local and then verify them. However, these techniques are not
applied into cloud storage environment, since the amount of data
in cloud is usually massive and the process of downloading data
will bring bulk network transmission consumption, especially for
energy, storage, and connectivity-constrained devices [11].

In recent years, many data verification algorithms
[1,7,10,18,19,22,23] based on provable data possession (PDP) [2]
or proofs of retrievability (POR) [14] have been proposed. These
algorithms focus on public verification, dynamic data operations,
blockless verification, stateless verification, and user data privacy
preservation. Moreover, to improve the efficiency of data ver-
ification, many researchers utilize data sampling to ensure the
verification at high detection rate [2,10,18,19,23]. They all use
block-oriented verification and the verification of a batch of data

http://dx.doi.org/10.1016/j.jpdc.2017.08.004
0743-7315/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jpdc.2017.08.004
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2017.08.004&domain=pdf
mailto:gwxu@dhu.edu.cn
mailto:china-firstszf1989@163.com
mailto:cryan@dhu.edu.cn
mailto:yanglan.gan@gmail.com
http://dx.doi.org/10.1016/j.jpdc.2017.08.004


116 G. Xu et al. / J. Parallel Distrib. Comput. 111 (2018) 115–125

to reduce computation and transmission overhead. Even though
the batch verification improves the verification efficiency since it
accumulates the verification tags and merges the verified data,
it also causes a serious issue that the verifier cannot rapidly and
accurately identify the corrupted blocks in thesemerged data once
the batch verification fails. To identify the corrupted data, the
verification must re-execute one block by one block verification.
Thus, even though the batch verification improves the verification
efficiency, we do not still ignore the issue of verification inter-
ference. For example, only a corrupted block results in the batch
verification failure.

To rapidly and efficiently identify the corrupted data and reduce
data computation and transmission consumption in detection pro-
cess, we propose a cube-based corrupted data detection algorithm
(CDD) based on three-dimensional location technology. In the al-
gorithm, we construct a challenge cube which ingeniously merges
the extracted data blocks’ verification proofs and accumulates the
extracted blocks’ verification tags to rapidly detect the integrity
of all the extracted data. Then we split the cube step by step to
accurately identify the corrupted blocks in all the extracted data.
Furthermore, algorithm analysis and simulation results show that
our algorithm achieves a lightweight and efficient detection under
the condition of ensuring the verification security. Our contribu-
tions in this paper can be summarized as follows.

First, we construct a challenge cube and analyze its relevant
parameters in detecting corrupted blocks.

Second, the cube-based hierarchical verification proofs and tags
are generated. The algorithm utilizes the bilinear mapping and BLS
short signature [4] to generate homomorphic verification tags, and
achieve public verification. Also, the algorithm combines the accu-
mulative verification tags [20] with Diffie–Hellman key exchange
technology [6] to preserve the data privacy and resist the attack of
data tampering [12].

Finally, the cube-based verification algorithm is designed to
rapidly identify corrupted data and improve the verification ef-
ficiency. Moreover, we comprehensively analyze the security of
algorithm, and design an experiment system to evaluate the per-
formance of our algorithm.

We organize the paper as follows. In Section 2, we briefly sum-
marize the current research on the verification of data integrity.
Section 3 describes the verificationmodel, threatmodel and design
goals. Section 4 advances a cube-based corrupted data detection
algorithm. Section 5 analyzes the security and performance of
algorithm. Section 6 evaluates the performance of algorithm by
simulations. Finally, Section 7 concludes the contributions of this
paper and presents future extension to the work.

2. Related work

In recent years, many data verification schemes based on PDP
or POR have been proposed in [1,2,7,10,14,16–19,22,23]. These
schemes usually consider the following issues:

• Public verification. Both data owners and third-party ver-
ifiers can verify the integrity of data stored in cloud
servers [2,16–19]. The principle is to store the non-forgery
verification tags in cloud servers.
• Dynamic data operation. Users can efficiently execute block-

level or more fine-grained updates to outsourced data with-
out recomputing the verification tags of unrenewed data
blocks. Erway [7] utilized a rank-based authentication skip
list to verify the updated data. Zhu [23] achieved an in-
tegrity verification scheme based on the index hash table
(IHT) to support dynamic data operations. Applying merkle
hash tree (MHT), Wang [19] presented a method for public
auditability and data dynamics. On the basis ofMHT, Liu [10]

expanded it to rank-based merkle hash tree (R-MHT) and
achieved the authorized public verification with efficient
verifiable fine-grained updates. Zhang [22] improved the
unbalanced disadvantage of MHT updating to achieve a bal-
anced update tree.
• Stateless verification. Verifier does not need to maintain

or update any state information in the verification process,
since the status information is difficult to be maintained in
such a complex cloud environment [19].
• Blockless verification. To ensure the safety and efficiency of

verification, the verifier checks the integrity of outsourced
data without downloading or accessing any actual data
block from the remote storage [16,17,19].
• Batch verification. To improve the efficiency of verification,

the verifier can handle a batch of data or multiple verifica-
tion tasks from different users simultaneously [17,19];
• Privacy preservation. To avoid information leakage in the

public verification, Wang [18] protected data privacy with
blind information technology and prevented the third party
auditor from disclosing data privacy. Thereafter, Wang [17]
exploited a homomorphic authenticable ring signature
(HARS) technology to preserve user’s identity privacy in
verified data for the cloud storage.
• Data confidentiality. Before data are uploaded, data owners

encrypt their data to prevent CSP from using their data
without permission [1,14].

These schemes pay more attention to the accuracy of data
verification. Also, they utilize the batch verification to improve the
verification efficiency. Some methods are proposed to detect the
corrupted data in the batch verification.

• One by one. It is a simple approach and the abbreviation
for one block by one block checked. Each verification tag is
checked to judge the integrity of each corresponding data
block. This method can accurately identify the corrupted
data blocks from all the checked data. However, it will
lead to much cost of verification proofs’ computation and
transmission with the increase of the number of checked
data blocks. Also, it decreases the efficiency of corrupted
data detecting.
• Binary search. Wang [17] utilized a binary search approach

to find the incorrect proofs corresponding to the data blocks.
The binary approach divides all data blocks into a binary tree
where each parent at most includes 2 children. Hwang [8]
exploited the detecting illegal signature technology and
public verification scheme based on BLS short signature
technology [4], and proposed a data integrity verification
scheme to report locations of corrupted blocks. However,
the scheme cannot identify all corrupted data blocks inmost
cases, or requires the verification to execute many times
to find them all. Also, it costs a large overhead of data
computation and transmission.
• Matrix crossover. In Li’s verification scheme [9], a signature

matrix was constructed by generating a random number
for each message signature. Hwang [8] utilized a random
matrix to detect the corrupted blocks. The method is to
detect whether the signature is illegal through each row
and column crossover element of the matrix and eventually
locate the actual corrupted blocks. Thematrix is constructed
by data block indices according to the order from left to
right and top to bottom. CSP generates a data integrity
proof with a row or column element in the matrix for each
data block, and then the verifier identifies the corrupted
blocks via individually checking each proof of each row or
each column element. Also, it cannot accurately identify the
corrupted blocks while the verification of many row and
column elements fails.



Download English Version:

https://daneshyari.com/en/article/4951509

Download Persian Version:

https://daneshyari.com/article/4951509

Daneshyari.com

https://daneshyari.com/en/article/4951509
https://daneshyari.com/article/4951509
https://daneshyari.com

