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a  b  s  t  r  a  c  t

This  study  investigates  the coupling  effects  of objective-reduction  and  preference-ordering  schemes  on
the  search  efficiency  in  the  evolutionary  process  of  multi-objective  optimization.  The  difficulty  in solving
a many-objective  problem  increases  with  the number  of  conflicting  objectives.  Degenerated  objective
space  can  enhance  the multi-directional  search  toward  the  multi-dimensional  Pareto-optimal  front  by
eliminating  redundant  objectives,  but it is  difficult  to capture  the true  Pareto-relation  among  objectives  in
the non-optimal  solution  domain.  Successive  linear  objective-reduction  for the  dimensionality-reduction
and  dynamic  goal programming  for preference-ordering  are  developed  individually  and  combined  with
a multi-objective  genetic  algorithm  in  order  to reflect  the  aspiration  levels  for  the  essential  objec-
tives  adaptively  during  optimization.  The  performance  of the proposed  framework  is demonstrated  in
redundant  and  non-redundant  benchmark  test  problems.  The  preference-ordering  approach  induces  the
non-dominated  solutions  near  the front  despite  enduring  a  small  loss  in diversity  of the  solutions.  The
induced  solutions  facilitate  a degeneration  of the  Pareto-optimal  front  using  successive  linear  objective-
reduction,  which  updates  the  set  of essential  objectives  by excluding  non-conflicting  objectives  from
the  set  of total  objectives  based  on  a principal  component  analysis.  Salient  issues  related  to  real-world
problems  are  discussed  based  on the  results  of an  oil-field  application.
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1. Introduction

The term many-objective problems (MOPs) refers to problems
that involve four or more objectives, in general [1]. The purpose
of optimizing MOPs is to yield trade-off optimal responses in
posterior space (objective space) by adjusting decision variables in
prior space (variable space) [2]. More than 90% of multi-objective
optimization approaches have been based on Pareto-optimality
using meta-heuristic techniques [3]. Most meta-heuristic methods
have adopted evolutionary algorithms of which population-based
properties strengthen a multi-points search toward an optimal
solution domain called a Pareto-optimal front (POF), i.e. a set
of Pareto-optimal solutions [4–6]. Pareto-optimality is a state
of optimal allocation of resources in which no response can be
improved without deteriorating other responses [7]. A variety of
evolutionary multi-objective optimization (EMO) algorithms have
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been proposed to represent the POF by achieving two  orthogonal
goals simultaneously: convergence of solutions as close to the
POF as possible and diversity of solutions as uniformly distributed
along the POF as possible [8–25].

Many Pareto-based EMO  algorithms have demonstrated
their applicability in solving two or three-objective problems
[11,14,16–23]. Given a finite population size, however, it is diffi-
cult to capture the entire POF in high-dimensional objective space
because the structure of the POF becomes more complicated in
proportion to the number of conflicting objectives [24,25]. High
computational cost, poor scalability, and hardness in visualizing
the multi-dimensional POF are the main difficulties associated with
the increasing complexity of the POF. In short, these difficulties are
called a curse of dimensionality [26]. POF is a M − 1 dimensional
hyperplane under regularity condition if M objectives conflict with
each other in the optimal solution domain [27]. At least LM−1

data points are required to approximate the POF provided that L
data points be necessary to represent the one-dimension of objec-
tive space [26]. Assuming that L is 3 and the population consists
of 50 solutions, for example, this population size is too small to
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approximate the four-dimensional POF because at least 81 data
points are needed. As a result, a bias of solutions on a certain
part of the POF is inevitable when using population-based algo-
rithms for solving MOPs. Increasing the population size might give
rise to enormous computational cost. Furthermore, a large number
of objectives deteriorate the convergence speed toward the POF
owing to the increasing probability that most non-dominated solu-
tions become stagnated in the non-optimal solution domain [9]. As
a compromise, the degeneration of objective space has been inves-
tigated for balancing the number of objectives and the population
size.

Objective-reduction approaches compress the objective space
by selecting an essential objective set that can preserve a similar
dominance relationship in a total objective set on the basis of fea-
ture selection [28–39]. This dimensionality-reduction of objective
space is based on the premise that redundant objectives exist in
the given MOPs [29]. The POF in reduced objective space needs
to be identical to the POF in the original objective space [30]. The
redundancy among objectives can be measured in terms of the
degree of dependences between pairs of objective vectors obtained
from the fitness evaluation of solutions. The redundant objectives
omitted in the current generation are excluded from the evolu-
tionary process in subsequent generations. The limitation of the
objective-reduction scheme is that an improvement of convergence
speed toward a reduced POF is insignificant if the number of essen-
tial objectives is greater than four [37]. Furthermore, it is difficult
to capture the true Pareto-relation among objectives from non-
optimal solutions in high-dimensional objective space. To the best
of our knowledge, only a few references pointed out that apply-
ing the preference-ordering scheme to the degenerated objective
space could delineate the POF more reliably [38,39].

Preference-ordering approaches focus on finding solutions that
satisfy the aspiration levels reflecting the decision maker (DM)’s
preference on the objectives [40–89]. Compared with the objective-
reduction scheme, the preference-ordering scheme regards every
objective as essential. The most distinguishing feature of these
approaches combined with an EMO  algorithm is to accelerate
the convergence toward a specific part of the POF while endur-
ing a loss in diversity of non-dominated solutions. Otherwise, the
computational cost increases exponentially in proportion to the
dimension of the POF. With reference to Ishibuchi et al.’s review
[40], preference-ordering techniques can be classified as follows:
modifying Pareto-dominance relation [41–50]; using scalarizing
functions [51–60]; using indicator functions [61–67]; assigning dif-
ferent ranks to solutions [68–72]; and allocating reference points
[45,46,73–77]. The drawback of the above techniques is that
increasing the selection pressure excessively might provide only a
few biased Pareto-optimal solutions. The degree of selection pres-
sure is related to how the preference is articulated on the objectives.
Hence, the adaptive preference is of importance for solving com-
plex MOPs since it is difficult to find non-dominated solutions
that satisfy every preference simultaneously in high-dimensional
objective space [78]. Preference information does not affect the
evolution of non-dominated solutions, in the case where all solu-
tions either satisfy or fail to achieve the given preference [79–81].
Meanwhile, the importance of the adaptive control has led some
researchers to extend reinforcement learning [82–86] to sequential
multi-objective decision-making analyses [87–89]. Nevertheless, it
is a job to separate the benefits associated with each objective for
identifying trade-offs solutions in the domain of multi-objective
reinforcement learning.

This study investigates the coupling effects of preference-
ordering and objective-reduction schemes on the search efficiency
of the evolutionary process for resolving the scalability issue in
exploring the high-dimensional POF. Dynamic goal programming
(DGP) for prioritizing solutions that satisfy the aspiration levels for

the essential objectives and successive linear objective-reduction
(SLOR) for updating the set of essential objectives are developed
individually, and then combined with a multi-objective genetic
algorithm (MOGA). Non-dominated Sorting Genetic Algorithm-II
(NSGA-II), one of the widely used MOGAs, is adopted in the pro-
posed framework to provide a set of non-dominated solutions
with regard to the essential objectives [18]. DGP adjusts both
the aspiration levels and the constraints allocated to the essen-
tial objectives adaptively, thereby inducing the convergence of the
evolved solution set toward the POF. The induced solutions facil-
itate a degeneration of the POF using SLOR, which updates the
set of essential objectives by excluding non-conflicting objectives
based on a principal component analysis. For brevity, this frame-
work is named DS-MOGA (MOGA combined with DGP and SLOR)
in this paper. The performance of DS-MOGA is demonstrated in
redundant benchmark test problems, non-redundant benchmark
test problems, and a subsurface modeling problem.

2. Theoretical background of multi-objective optimization

This section explains the parameterization of MOP  (see Section
2.1) and the Pareto-dominance relation (see Section 2.2) in brief.

2.1. Parameterization of many-objective problem

Eq. (1) generalizes a multi-objective minimization problem:

Minimize y = f (x) = f (x1, . . .,  xN) = {f1(x), . . .,  fM(x)}
Subject to x ∈ X, f (x) ∈ Y,

(1)

where x is a variable vector in prior space X, f is an objective estima-
tor to compute an objective vector f(x) in posterior space Y, xi is the
ith decision variable in x, fj(x) is the jth objective value in f(x), N is
the number of decision variables, and M is the number of objectives.
Computing f(x) is called forward modeling, while estimating x from
f(x) is called inverse modeling. Optimization is an iterative process
of forward and inverse modeling in order to explore a set of optimal
solutions, minimizing f(x) in objective space. In this paper, the term
solution refers to the variable vector x and its corresponding objec-
tive vector f(x) interchangeably. In reservoir characterization, for
example, the solution indicates a reservoir model of which the vari-
able vector x is a set of static rock and fluid properties to be adjusted
(porosity, permeability, capillary pressure) and the objective vec-
tor f(x) is a set of dynamic responses to be matched (time-series
production/injection data measured at wells).

2.2. Pareto-dominance relation

Pareto-optimality is a state of an optimal allocation of resources
[7]. Mathematically, Pareto-optimality is defined as the best non-
domination that is a state of equivalence where no solution can
be improved with respect to any objective without worsening at
least one other objective [9]. Assuming a minimization problem, a
variable vector x1 ∈ X is said to dominate a variable vector x2 ∈ X if
and only if Eq. (2) is satisfied:

∀i ∈ {1, . . .,  M}  : fi(x1) ≤ fi(x2) ∧ ∃j ∈ {1, . . .,  M}  : fj(x1) < fj(x2).

(2)

Dominance of x1 over x2 implies that x1 is superior to and
then preferred over x2 for decision making. Simply, f(x1) ≺ f(x2). If
Eq. (2) is not satisfied, x1 is said to conflict with x2. Both x1 and
x2 are non-dominated to each other, thus regarded as equivalent
solutions.x1 becomes a member of the Pareto-optimal solutions
if no other variable vector x dominates x1 in the M-dimensional
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