
J. Parallel Distrib. Comput. 106 (2017) 50–61

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

On the injection of hardware faults in virtualized multicore systems
Marcello Cinque, Antonio Pecchia ∗

Dipartimento di Ingegneria Elettrica e Tecnologie dell’Informazione, Universitá degli Studi di Napoli Federico II, Via Claudio 21, 80125, Naples, Italy

h i g h l i g h t s

• Emerging industrial parallel computing applications.
• A framework to inject hardware faults.
• Implementation based on widely-used technologies.
• Extensive fault injection campaigns.

a r t i c l e i n f o

Article history:
Received 22 August 2016
Received in revised form
3 February 2017
Accepted 6 March 2017
Available online 22 March 2017

Keywords:
Multicore
Virtualization
Fault injection
Machine check exception
Dependability

a b s t r a c t

Virtualized multicore systems represent an emerging computing paradigm in the critical systems
industry. Virtualization-based solutions leverage the different cores of the processor to run operating
systems and applications within separate partitions, to support the development of parallel mixed-
criticality systems, and to improve fault-tolerance by protecting and isolating the operating
environments. The critical systems industry is subjected to international standards, which recommend
fault injection as a mean to contribute with evidence to safety cases. This paper proposes a framework to
inject hardware faults in virtualized multicore systems. Our proposal capitalizes on the error reporting
architecture of modern processors and allows injecting faults both at hypervisor- and guest-OS-level. We
implement the framework in the context of the widely used Intel Core i7 processor and Xen hypervisor.
We demonstrate the use of the framework by means of about 60,000 injection experiments in a Linux-
based virtualized multicore system installation.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Over the past years the critical systems industry has started
looking tomulticore processorswith growing interest across dif-
ferent domains, such as avionic [27], automotive [36] and medi-
cal [48]. Beside the recognized advantages in terms of performance,
whichwas among the early concerns in industrial parallel comput-
ing applications [12,42], the recent industrial driver of the multi-
core technology is the chance to integratemany software functions
on the same chip.Multicore processors reduce the number of hard-
ware units and communication links across them, which represent
a significant cause of system-wide failures. The multicore technol-
ogy is fostering themigration from federated to integrated architec-
tures, which consist of different tasks running on the same chip.

∗ Corresponding author.
E-mail addresses: macinque@unina.it (M. Cinque), antonio.pecchia@unina.it

(A. Pecchia).

Integrated Modular Avionics (IMA) [2] and AUTOSAR1 clearly rep-
resent this industry trend in two distinct domains.

Let us present an example for the sake of clarity. The latest
versions of AUTOSAR have introduced supports for multicore
systems. The AUTOSAR OS specifies a number of capabilities, such
as static task assignment to a given core and inter/intra-core
coordination to access shared resources. Modern cars host up to
70+ Electronic Control Units (ECUs) connected by communication
links: ECUs are responsible for executing tasks, such as gear
control, engine control, and adaptive cruise control. In the
multicore scenario, different ECUs can be deployed on the same
processor. The mechanisms implemented by AUTOSAR to manage
isolation and scheduling issues are described in [36].

Virtualization is often used on the top of multicore processors
to achieve isolation among tasks [10]. It allows running different
operating systems and applications on the same processor
within virtual machines, which access the hardware through the

1 http://www.autosar.org.

http://dx.doi.org/10.1016/j.jpdc.2017.03.004
0743-7315/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jpdc.2017.03.004
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2017.03.004&domain=pdf
mailto:macinque@unina.it
mailto:antonio.pecchia@unina.it
http://www.autosar.org
http://dx.doi.org/10.1016/j.jpdc.2017.03.004


M. Cinque, A. Pecchia / J. Parallel Distrib. Comput. 106 (2017) 50–61 51

hypervisor. Virtualization is strongly beneficial to the critical
systems industry because it supports:

• hardware/software consolidation, i.e., different operating sys-
tems (e.g., a real time and not real time OS) and applications
run on the same hardware unit [28];

• developing parallel mixed-criticality systems, i.e., safety and
non-safety tasks are isolated and run on the same unit;

• gradually migrating to Off-The-Shelf (OTS) technologies and to
new hardware devices [41];

• implementing fault-tolerancemechanisms bymeans of replica-
tion and/or diversity approaches [14];

• reducing certification costs by isolating certified software.

Overall these benefits have made virtualized multicore
systems an emerging parallel computing paradigm within the
critical systems industry. For example, the use of virtualization-
based solutions has been investigated in the aerospace [15], and
automotive [35] domains. Commercial solutions in the context
of certified hypervisors and safety-related applications have been
proposed by WindRiver and Intel [46].

The critical systems industry is subjected to international safety
standards, such as ISO-26262, IEC-61508, NASA-STD-8719.13B and
DO-178B, which guide system validation and certification. In this
respect, fault injection is strongly recommended (if not even
mandatory) to accomplish a variety of requirements imposed
by the market, such as contributing with evidence to safety
cases, supplementing the set of tests to achieve fault coverage
and code coverage including the analysis of the error-handling
mechanisms, or ganging insights into the system fault-tolerance
in face of exceptional conditions [29]. For example, fault injection
is an important constituent of the ISO-26262 [22] to supplement
software unit and integration testing. This process aims to ensure
the correctness of a given implementation in terms of specification,
technical and functional safety requirements.

In spite of the number of techniques and tools, the use of
fault injection for the assessment of multicore-based systems is
still recent. There are several challenges in injecting hardware
faults in virtualized multicore systems. First, the availability
of hardware/software interfaces to support the injection step.
Injection of hardware faults was originally accomplished by
tampering with the physical device through special-purpose
equipment. This approach is costly and might damage the target;
as such, it can be hardly pursued by industry, which is subjected
to strict budget and time-to-market constraints. When hardware
faults are reproduced by software, the challenge is conceiving a
representative faultmodel, i.e., the specification of faults the system
is actually expected to encounter in reality. Multicore systems
encompass errors and hardware units, which cannot be addressed
through traditional bit-flip and stuck-at models. To the best of
our knowledge, no fault models or established frameworks are
currently available in the context of virtualizedmulticore systems.

This paper proposes a framework to inject hardware faults
in virtualized multicore systems. The proposal capitalizes on the
use of the error reporting architecture implemented by mod-
ern processors, which encompasses the mechanisms and registers
for detecting and reporting internal hardware errors. The architec-
ture notifies either (i) corrected errors of the hardware units or
(ii) errors that cannot be fully handled at hardware level, which
cause the processor to interrupt the current program. The architec-
ture provides detailed amount of diagnostic data to upper system
levels through a number of dedicated registers. For example, the
occurrence of a cache hierarchy error usually comes with informa-
tion such as the cache level, type, and action performed at the time
the error occurred (e.g., data read, instruction fetch, snoop).

The diagnostic data generated by the error reporting architec-
ture is extremely valuable to the software running on the top of the

processor. In this respect, the error-handling complexity is shifted
to the software, which is expected to correctly interpret a given er-
ror notification and to implement suitable recovery mechanisms
to address the error. Software will play an increasingly key role
at implementing proper fault-tolerance/recoverymechanisms and
mitigation actions: assessing its behavior against the occurrence of
hardware faults is a key concern in critical systems.

Our framework injects hardware faults by writing into the
registers of the error reporting architecture. This technique
supports low-cost, time-effective, and controllable experimental
campaigns, which traditionally represented the major challenges
to the practicability of fault injection. We implement the
framework in the context ofwidely used technologies, i.e., the Intel
Core i7 2670QM processor and the Xen hypervisor. Our solution
allows injecting faults both at hypervisor- and guest-OS-level.
We demonstrate the use of the framework for the assessment
the error-handling mechanisms of a virtualized multicore system;
about 60,000 injection experiments have been run in a Linux-
based installation, paving the way for fault-injection-based safety
cases in parallel critical applications. Experiments made it possible
to gain insights into the behavior of Xen at forwarding error
notifications to guest OSs and revealed a potential bug of the error-
handling procedure in the Linux OS.

The rest of the paper is organized as follows. Section 2 in-
troduces the background and related work in the area. Section 3
provides an overview on the error reporting architecture of the
Intel Core i7 and discusses the representativeness of the fault
model adopted in this study. Section 4 describes the fault injection
framework and the technicalities underlying the proposed solu-
tion. Section 5 presents the case study on the assessment of error-
handling mechanisms, while Section 6 concludes the work and
discusses future work directions.

2. Related work

2.1. Hardware fault injection

Several techniques have been proposed in order to inject
hardware faults. Hardware-based techniques insert hardware
faults in the target system (i) by means of special-purpose and
architecture-dependent equipment or (ii) by interfering with the
physical unit (e.g., lowering the device voltage, increasing the
temperature, inducing electromagnetic interferences) [16]. These
techniques have the advantage of reproducing real hardware
faults; however, they are costly and risky to implement, as they
might disrupt the target of the injection. Moreover, intrusiveness
and interferences caused by the injectors make it hard to observe
the effect of faults.

For these reasons, software-implemented fault injection
(SWIFI) techniques have gained popularity. SWIFI consists in
reproducing by software the effects of hardware faults. Injection is
accomplished either at (i) compile time by inserting the effects of
hardware faults into the target or (ii) at run time using timeouts,
exceptions, code insertion or altering the state of the target in order
to trigger faults. Several SWIFI tools have been proposed so far by
the literature:
• FIAT [5] corrupts the data area of the binary according to three

fault models, namely, zero-a-byte, set-a-byte, and two-bit-
compensating. The zero-a-byte and set-a-byte fault resets and
sets eight bits of a 32-bitword,while the two-bit-compensating
flips two bits.

• FERRARI [24] injects permanent/transient faults, and control
flow errors, bus errors, memory errors, and processor control
line errors into systems based on SPARC processors from Sun
Microsystems. FERRARI uses software traps to inject faults and
has five fault models: XORing a bit, resetting a bit, setting a bit,
setting a byte and resetting a byte.



Download English Version:

https://daneshyari.com/en/article/4951547

Download Persian Version:

https://daneshyari.com/article/4951547

Daneshyari.com

https://daneshyari.com/en/article/4951547
https://daneshyari.com/article/4951547
https://daneshyari.com

