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There are two popular types of forecasting algorithms for fuzzy time series (FTS). One is based on inter-
vals of universal sets of independent variables and the other is based on fuzzy clustering algorithms.
Clustering based FTS algorithms are preferred since role and optimal length of intervals are not clearly
understood. Therefore data of each variable are individually clustered which requires higher computa-
tional time. Fuzzy Logical Relationships (FLRs) are used in existing FTS algorithms to relate input and
output data. High number of clusters and FLRs are required to establish precise input/output relations
which incur high computational time. This article presents a forecasting algorithm based on fuzzy clus-
tering (CFTS) which clusters vectors of input data instead of clustering data of each variable separately
and uses linear combinations of the input variables instead of the FLRs. The cluster centers handle fuzzi-
ness and ambiguity of the data and the linear parts allow the algorithm to learn more from the available
information. It is shown that CFTS outperforms existing FTS algorithms with considerably lower testing
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error and running time.
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1. Introduction

Fuzzy time series (FTS) is a universal forecasting method in a
fuzzy environment [1-3]. FTS is used in various areas such as fore-
casting electricity load demand [4], stock exchange [5-10], rainfall
and temperature forecasting [11], pollution [12], enrollments
[13-15], etc. There are two major categories of FTS algorithms: FTS
algorithms based on intervals of the universal set [3,16] and FTS
algorithms based on fuzzy clustering [17-22]. The main problem
with the interval based algorithms is the length of the intervals
which is not clear how to be chosen. Many attempts are made to
find optimal intervals but the problem is still unsolved [23-26].
Clustering based algorithms are preferred since they are interval
independent.

A high-order multi-variable algorithm for FTS (HMV-FTS)
was presented based on fuzzy clustering to improve forecast-
ing accuracy and handle fuzzy time series with high order and
multi-dimensional input space simultaneously [17]. HMV-FTS out-
performs existing FTS algorithms as examined by various data sets
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of different contexts. Data of each variable of the FTS are clustered
individually in HMV-FTS and other clustering based algorithms,
which demands higher running time. The objective of the present
work is to establish a fast and precise forecasting algorithm for
FTS, based on fuzzy clustering and linear combinations of the input
variables (CFTS). In contrast to the existing clustering based FTS
algorithms, which cluster data of each variable separately, CFTS
clusters the input data vectors in the clustering section of the algo-
rithm.

This paper is organized as follows: mathematical framework of
CFTS algorithm is discussed in Section 2. The algorithm is evaluated
in Section 3. Computational cost of the algorithm is investigated in
Section 4. CFTS is compared with recent FTS algorithms in Section
5 and concluding remarks are drawn in Section 6.

2. Mathematical formulation of CFTS algorithm

We introduce FTS briefly and then propose CFTS algorithm. Let
Y(t)en, t=0, 1, 2, ... be the universe of discourse on which fuzzy
sets fi(t),i=1, 2, ... are defined and F(t) be a collection of f;(t)s, then
F(t) is defined as a fuzzy time series on Y(t). In general, F(t) is a
linguistic variable with linguistic values, fi(t). If F(t) is related to
F(t—1), the Fuzzy Logical Relationship (FLR) between them is rep-
resented by F(t —1)— F(t) which is a first order FLR. In this FLR,
F(t—1) and F(t) are called current state and next state and denoted
by A; and A;, respectively, and their FLR is shown as A; — A;. FLRs
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with the same current states are grouped as a Fuzzy Logical Rela-
tionship Group (FLRG). For forecasting, current state of the FLR of
the forecast time is constructed and then the FLRG with current
state identical with that of the forecast FLR is found. Next state of
the forecast FLR is taken the same as the next state of this FLRG.
Finally, crisp value of the forecast is computed from defuzzification
of the fuzzy value(s) of the forecast obtained from the next state of
the forecast FLR [2,16].

In the CFTS algorithm, the input data are clustered as in the
clustering based FTS algorithms but no FLR is used. Instead of FLRs,
CFTS uses combinations of input variables to map the input data
into the output space. For high order FTS, one can simply apply
CFTS algorithm on the lagged variables of the FTS to forecast future
values of the dependent variable.

Consider X,y and y14n as the input and output data of the FTS
where N is number of observations and r is number of the FTS
variables. jth input data vector is X; = [x1j X X ]T and its
corresponding output is y;. We group X matrix into c clusters using
Fuzzy C-Means algorithm, FCM [27]. For this purpose, following
index is minimized with the given constraint [27]:
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where c is the number of clusters, 7; is center of the ith cluster (ith
row of cluster centers matrix, Vi), u;; is membership grade of the
jth data vector in the ith cluster (element of partition matrix, Uc,n),
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fuzziness and A, is the covariance norm matrix, defined as:
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Since A is a symmetric matrix, A=AT. Using Lagrange Multipliers
Method (LMM), J; is written as:
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Zeroing derivatives of J; with respect to ¥;, u;j and A; yields:
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These equations are repeatedly updated until changes in U and V
become negligible. After deciding on cluster centers, Membership
Function (MF) of the gth variable in the ith cluster is computed as:
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Weighted contribution of each cluster in the calculation of the
output associated with )?j is computed as:
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Consider the matrix X(*r+1)><N such that: xj=1, x(q+1y

Xg Vqell,r],je[1,N]. Then output of CFTS algorlthm for x]* =

(5)
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[1 X;]is considered as the weighted linear combinations of the
input variables.
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The coefficients p;q are obtained by minimizing the following index:
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Zeroing derivative of Jwith respect to pjq yields:
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Using x*j = 1,x(q+11} =xgiVq e [1,r],j € [1,N], (8) is written as

the following set of N equations:
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Since number of equations in HP =  is usually higher than num-
ber of unknowns, it is solved by Least Square Estimate method (LSE)

where the errore = (y — HI3)T(37 — HP) is minimized.
=y — 2y"HP + PTHTHP
de T, Typ B Ty ' yTy
o5 = ~2HTy+ 2HTHP =0 = P = (HTH) ' HTy

However, sometimes H'H is ill-conditioned and pseudo-inverse
of this matrix should be used. So, P is calculated from:
P=(HTH) HTy (10)

where (HTH)" is pseudo-inverse of HTH.

3. Test cases

Results of the CFTS algorithm are compared with those of the
other FTS algorithms and popular forecasting methods. Four test
cases are studied to evaluate CFTS algorithm. Degree of fuzziness,
m, is taken 2 for all cases but one can choose an optimal value of
me (1, co] which minimizes the testing error. We use Root Mean
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