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a  b  s  t  r  a  c  t

There  are  two  popular  types  of  forecasting  algorithms  for fuzzy  time  series  (FTS).  One  is  based  on  inter-
vals  of universal  sets  of  independent  variables  and  the other  is  based  on  fuzzy  clustering  algorithms.
Clustering  based  FTS  algorithms  are  preferred  since  role  and  optimal  length  of  intervals  are  not  clearly
understood.  Therefore  data  of each  variable  are  individually  clustered  which  requires  higher  computa-
tional  time.  Fuzzy  Logical  Relationships  (FLRs)  are  used  in existing  FTS  algorithms  to  relate  input  and
output  data.  High  number  of clusters  and  FLRs  are  required  to establish  precise input/output  relations
which  incur  high  computational  time.  This  article  presents  a forecasting  algorithm  based  on  fuzzy  clus-
tering  (CFTS)  which  clusters  vectors  of  input  data  instead  of clustering  data  of each  variable  separately
and  uses  linear  combinations  of  the  input  variables  instead  of  the FLRs.  The  cluster  centers  handle  fuzzi-
ness  and  ambiguity  of  the data and  the  linear  parts  allow  the  algorithm  to learn  more  from  the  available
information.  It  is  shown  that  CFTS  outperforms  existing  FTS  algorithms  with  considerably  lower  testing
error  and  running  time.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Fuzzy time series (FTS) is a universal forecasting method in a
fuzzy environment [1–3]. FTS is used in various areas such as fore-
casting electricity load demand [4], stock exchange [5–10], rainfall
and temperature forecasting [11], pollution [12], enrollments
[13–15], etc. There are two major categories of FTS algorithms: FTS
algorithms based on intervals of the universal set [3,16] and FTS
algorithms based on fuzzy clustering [17–22]. The main problem
with the interval based algorithms is the length of the intervals
which is not clear how to be chosen. Many attempts are made to
find optimal intervals but the problem is still unsolved [23–26].
Clustering based algorithms are preferred since they are interval
independent.

A high-order multi-variable algorithm for FTS (HMV-FTS)
was presented based on fuzzy clustering to improve forecast-
ing accuracy and handle fuzzy time series with high order and
multi-dimensional input space simultaneously [17]. HMV-FTS out-
performs existing FTS algorithms as examined by various data sets
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of different contexts. Data of each variable of the FTS are clustered
individually in HMV-FTS and other clustering based algorithms,
which demands higher running time. The objective of the present
work is to establish a fast and precise forecasting algorithm for
FTS, based on fuzzy clustering and linear combinations of the input
variables (CFTS). In contrast to the existing clustering based FTS
algorithms, which cluster data of each variable separately, CFTS
clusters the input data vectors in the clustering section of the algo-
rithm.

This paper is organized as follows: mathematical framework of
CFTS algorithm is discussed in Section 2. The algorithm is evaluated
in Section 3. Computational cost of the algorithm is investigated in
Section 4. CFTS is compared with recent FTS algorithms in Section
5 and concluding remarks are drawn in Section 6.

2. Mathematical formulation of CFTS algorithm

We introduce FTS briefly and then propose CFTS algorithm. Let
Y(t) ∈ � , t = 0, 1, 2, ... be the universe of discourse on which fuzzy
sets fi(t), i = 1, 2, ... are defined and F(t) be a collection of fi(t)s, then
F(t) is defined as a fuzzy time series on Y(t). In general, F(t) is a
linguistic variable with linguistic values, fi(t). If F(t) is related to
F(t−1), the Fuzzy Logical Relationship (FLR) between them is rep-
resented by F(t − 1) → F(t) which is a first order FLR. In this FLR,
F(t−1) and F(t) are called current state and next state and denoted
by Ai and Aj, respectively, and their FLR is shown as Ai → Aj. FLRs
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with the same current states are grouped as a Fuzzy Logical Rela-
tionship Group (FLRG). For forecasting, current state of the FLR of
the forecast time is constructed and then the FLRG with current
state identical with that of the forecast FLR is found. Next state of
the forecast FLR is taken the same as the next state of this FLRG.
Finally, crisp value of the forecast is computed from defuzzification
of the fuzzy value(s) of the forecast obtained from the next state of
the forecast FLR [2,16].

In the CFTS algorithm, the input data are clustered as in the
clustering based FTS algorithms but no FLR is used. Instead of FLRs,
CFTS uses combinations of input variables to map  the input data
into the output space. For high order FTS, one can simply apply
CFTS algorithm on the lagged variables of the FTS to forecast future
values of the dependent variable.

Consider Xr×N and �y1×N as the input and output data of the FTS
where N is number of observations and r is number of the FTS
variables. jth input data vector is �xj = [ x1j x2j . . . xrj ]T and its
corresponding output is yj. We  group X matrix into c clusters using
Fuzzy C-Means algorithm, FCM [27]. For this purpose, following
index is minimized with the given constraint [27]:

J1 =
N∑

j=1

c∑
i=1

um
ij ||�xj − �vi||2A,

c∑
i=1

uij − 1 = 0 (1)

where c is the number of clusters, �vi is center of the ith cluster (ith
row of cluster centers matrix, Vr×c), uij is membership grade of the
jth data vector in the ith cluster (element of partition matrix, Uc×N),
||�xj − �vi||2A = (�xj − �vi)

T A(�xj − �vi) is distance, m ∈ (1, ∞] is degree of
fuzziness and Ar×r is the covariance norm matrix, defined as:

A =

⎛
⎝ 1

N

N∑
j=1

(�xj − �̄v)(�xj − �̄v)
T

⎞
⎠

−1

, �̄v = 1
N

N∑
j=1

�xj (2)

Since A is a symmetric matrix, A = AT. Using Lagrange Multipliers
Method (LMM), J1 is written as:

J∗1 =
N∑

j=1

c∑
i=1

uij
m||�xj − �vi||2A +

N∑
j=1

�j

(
c∑

i=1

uij − 1

)

Zeroing derivatives of J∗1 with respect to �vi, uij and �j yields:

∂J∗1
∂�vi

=
N∑

j=1

uij
m(A + AT )(�xj − �vi) = 0, A = AT ⇒ �vi =

∑N
j=1um

ij
�xj∑N

j=1um
ij

∂J∗1
∂uij

= mum−1
ij

||�xj − �vi||2A + �j = 0,
∂J∗1
∂�j

=
c∑

i=1

uij − 1 = 0 ⇒ uij

=

⎡
⎢⎣ c∑

k=1

(
||�xj − �vi||2A
||�xj − �vk||2A

) 1
m − 1

⎤
⎥⎦

−1

Therefore,

�vi =
∑N

j=1um
ij

�xj∑N
j=1um

ij

, uij =
[

c∑
k=1

(
||�xj − �vi||2A
||�xj − �vk||2A

) 1
m−1

]−1

(3)

These equations are repeatedly updated until changes in U and V
become negligible. After deciding on cluster centers, Membership
Function (MF) of the qth variable in the ith cluster is computed as:

uqij =
[

c∑
k=1

(
||xqj − vqi||2
||xqj − vqk||2

) 1
m−1

]−1

,

||xqj − vqi||2 = (xqj − vqi)
2 ∀j ∈ [1,  N] (4)

Weighted contribution of each cluster in the calculation of the
output associated with �xj is computed as:

�ij =
∏r

q=1uqij∑c
i=1

∏r
q=1uqij

(5)

Consider the matrix X∗
(r+1)×N

such that: x∗
1j

= 1, x∗
(q+1)j =

xqj ∀q ∈ [1,  r], j ∈ [1,  N]. Then output of CFTS algorithm for �x∗
j

=
[ 1 �xj ] is considered as the weighted linear combinations of the
input variables.

yj =
c∑

i=1

�ij

r+1∑
q=1

piqx∗
qj (6)

The coefficients piq are obtained by minimizing the following index:

J2 =
(

c∑
i=1

�ij

r+1∑
q=1

piqx∗
qj − yj

)2

(7)

Zeroing derivative of J2with respect to piq yields:

∂J2
∂piq

=
(

c∑
i=1

�ij

r+1∑
q=1

piqx∗
qj − yj

)
�ijx

∗
qj = 0 ⇒

c∑
i=1

�ij

r+1∑
q=1

piqx∗
qj − yj = 0 ∀j ∈ [1,  N]

(8)

Using x∗
1j

= 1, x∗
(q+1)j = xqj ∀q ∈ [1,  r], j ∈ [1,  N], (8) is written as

the following set of N equations:

H�P = �y ∴ �P = [ �p1 �p2 · · · �pi · · · �pc ]
T
, �pi = [ pi1 pi2 · · · piq · · · pi(r+1) ]

H  =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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.

.

. ...
.
.
.

.

.

. ...
.
.
. ...

.

.

. ...
.
.
.
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.

.

. ...
.
.
.

.

.

. ...
.
.
. ...

.

.

. ...
.
.
.

�1N ... �cN �1N x1N ... �cN x1N ... �1N xrN ... �cN xrN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9)

Since number of equations in H�P = �y is usually higher than num-
ber of unknowns, it is solved by Least Square Estimate method (LSE)

where the error e = (�y − H�P)
T
(�y − H�P)  is minimized.

e = �yT �y − 2�yT H�P + �PT HT H�P
∂e

∂�P
= −2HT �y + 2HT H�P  = 0 ⇒ �P = (HT H)

−1
HT �y

However, sometimes HTH is ill-conditioned and pseudo-inverse
of this matrix should be used. So, �P is calculated from:

�P = (HT H)
+

HT �y (10)

where (HT H)
+

is pseudo-inverse of HTH.

3. Test cases

Results of the CFTS algorithm are compared with those of the
other FTS algorithms and popular forecasting methods. Four test
cases are studied to evaluate CFTS algorithm. Degree of fuzziness,
m,  is taken 2 for all cases but one can choose an optimal value of
m ∈ (1, ∞]  which minimizes the testing error. We  use Root Mean
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