J. Parallel Distrib. Comput. 103 (2017) 104-112

journal homepage: www.elsevier.com/locate/jpdc

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

PARALLELAND
DISTRIBUTED
COMPUTING

Research on semantic of updatable distributed logic and its

application in access control

Li Ma?, Peng Leng®, Yong Zhong **, Wenyin Yang?

2School of Electronic and Information Engineering, Foshan University, Foshan, China
b Department of Information Engineering, Wuhan Business University, Wuhan, China

@ CrossMark

HIGHLIGHTS

e Extends U-Datalog to distributed environment but keeps the logic semantic and evaluation method.
e Define update in distributed environment based on non-immediate update semantics.
e Leads an evaluation convenience and advantages in distributed environment.

ARTICLE INFO ABSTRACT

Article history:

Received 1 September 2016
Received in revised form

30 November 2016

Accepted 3 December 2016
Available online 3 January 2017

Keywords:

Distributed logic

Updatable distributed datalog
Access control

UD-Datalog

The paper presents a distributed logic UD-Datalog whose advantage lies that it extends U-Datalog to
distributed environment but still keeps the logic semantic and evaluation method of U-Datalog. The
logic presented a new approach to define update in distributed environment based on non-immediate
update semantics which distinguishes the language from other distributed datalog. The language is pure
declarative and allows us to use top-down and equivalent bottom-up computational evaluation so the
already developed techniques for Datalog evaluation can be reused. Firstly, the paper elaborates the
syntax and semantic of the logic. Secondly, the evaluation method of the logic is explained. Finally, an
application example of the logic in access control of network is discussed which shows the application
and expressiveness of the logic.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The emergence of Web 2.0 and social networks have attracted
a large amount of users to regularly connect, interact and share
information with each other, such as twitter, Facebook, LinkedlIn,
YouTube. However, the massive data and distributed environ-
ment of social networks make traditional access control mod-
els difficult to implement [16,21,22,20]. So in recent years, logic
programming has been proposed as an attractive foundation for
distributed programming based on work in declarative network-
ing [9]. And there has been optimism that declarative languages
grounded in Datalog can provide a clean foundation for distributed
programming, which makes a hit for research of distributed com-
putation using such languages [7,18,19,17,1,10,11,14]. However, in

* Correspondence to: Electronic and Information Engineering School, Foshan
University, Foshan, China.
E-mail addresses: molly_917@163.com (L. Ma), Ip521@sina.com (P. Leng),
zhongyong@fosu.edu.cn (Y. Zhong), cswyyang@163.com (W. Yang).

http://dx.doi.org/10.1016/j.jpdc.2016.12.006
0743-7315/© 2016 Elsevier Inc. All rights reserved.

these papers, the semantics is operational and based on a distribu-
tion of the program before the execution.

In view of issues with this model, Joseph presents a new
model DEDALUS based on an explicit time constructor [13]. But
Galland found the semantics of negation together with the use of
time in that model rather unnatural. In particular, time is used
as an abstract logical notion to control execution steps and the
future may have influence on the past. As a consequence, it is
difficult to understand what applications are doing as well as to
prove results on their language. Galland presents WebdamLog
language for the solutions which still is unnatural for its difficult for
distinguishing deductive or active rules or update semantics [12].
And the semantics is still operational.

Especially for updatable state, many deductive database sys-
tems admit procedural semantics to deal with updates using an
assignment primitive. DEDALUS retain a purely logical interpreta-
tion by admitting temporal extensions into their syntax and inter-
preting assignment or update as a composite operation across time
steps rather than as a primitive [6]. Many distributed logic lan-
guages use hybrid declarative/imperative languages such as Over-
log [15] or Boom [5,4] and other [3,2,18,13,23] often clouded our

http://dx.doi.org/10.1016/j.jpdc.2016.12.006
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2016.12.006&domain=pdf
mailto:molly_917@163.com
mailto:lp521@sina.com
mailto:zhongyong@fosu.edu.cn
mailto:cswyyang@163.com
http://dx.doi.org/10.1016/j.jpdc.2016.12.006

L. Ma et al. /]. Parallel Distrib. Comput. 103 (2017) 104-112 105

understanding of the “correct” execution of single-node programs
that performed state updates due to the combination of Datalog
and imperative constructs.

The paper presents a distributed logic UD-Datalog whose
contributions can be summarized as follows:

e Thelogic extends U-Datalog to distributed environment but still
keeps the logic semantic and evaluation method of U-Datalog in
centralized environment so a universal logic can be kept.

e The logic presented a new approach to define update in dis-
tributed environment based on non-immediate update seman-
tics which distinguishes the language from other distributed
datalog, since an immediate update is the main feature of cur-
rent distributed datalog.

e The language is pure declarative and allows us to use top-
down and equivalent bottom-up computational evaluation
so the already developed techniques for Datalog evaluation
can be reused, which leads an evaluation convenience and
advantages comparing to current hybrid declarative/imperative
logic languages in distributed environment.

The remainder of the paper will be organized as follows. Sec-
tion 2 provides preliminaries covering the concepts of U-Datalog
and distributed DU-Datalog. Section 3 gives details of our proposed
model, which is the logic semantic. Section 4 illuminates the uni-
versal evaluation algorithm of UD-Datalog program with an im-
plementation example. An application example of access control
is showed in Section 5 and a contrastive analysis is described in
Section 6. The paper is concluded in Section 7.

2. Preliminary

2.1. Overview of U-Datalog

U-Datalog is a type of updatable Datalog programming
language, in which predicate atoms consist of both updated atoms
representing Insert and Remove, expressed as £p(ty, to, ..., ty).
U-Datalog language can be considered a special use case of using
Constraint Logic Programming (CLP), by which updating atoms
+p(ty, ta, ..., ty) as the constraints of the Datalog rules. Except
updatable atoms, other Datalog atoms are Query Atoms (QA) phase.
Two implementation phases of U-Datalog include Marking and
Update. The marking phase completes the variable binding of
the transactions and obtains the update sets. The update phase
implements the update sets.

Moreover, transactions in U-Datalog follow the rule in Eq. (1)
without carrying headers.

U, ...,Us, Li,...,Ln. (1)

InEq. (1), U; (0 < i < k) is arandom update atom. L; (0 < i < m) is
an arbitrary literal. For any transaction T, we define that a T’s query
atom set is the query transaction of T. The update set obtained
during the marking phase is T’s update transaction. Additionally,
a pure Datalog program can be considered a special case of
U-Datalog.

2.2. Distributed DU-datalog rules

2.2.1. Domain

A domain is the value range of a predicate variable, and we
call a discrete finite domain a finite domain. A predicate can be
showed as p(x; : t1,...,%, : tn), where we call xq, ..., x, the
terms of corresponding domain and t; (1 < i < n) are the types
of corresponding terms. If domain of type t; (1 < i < n) is a finite
domain, we call x; (1 < i < n) a finite term. For simplicity, we omit
predicate type and show a predicate as p(x, . . ., X,).

2.2.2. Predicate types and entity (location) suffix

We assume the last term of each predicate p(x4, ..., x,) rep-
resents the entity of the predicate. For a intuitive view, we ex-
press the predicate p(xq, ..., X,—1)@x, which means the predicate
p(x1, ..., Xy—1) on the entity x,. We use Loc(p(x1, . .., X;)) to rep-
resent entity x,. Similar to Webdamlog [16], an entity is an object
having storage and data processing capabilities, which can be ei-
ther a physical network node or a virtual entity, such as an account
in social networks.

2.2.3. Predicate and atoms

We define a constant a term and a variable a term. Let
p(X1, ..., X,—_1)@x, be a random predicate symbol, with the terms
X1,...,Xp_1 in its corresponding domain and x, is the entity
suffix. We call p(xq,...,x,_1)@x, or £p(xq1,...,X,_1)@x, an
atom formula or atom for short. Predicates includes two types:
extensional predicates shown as P, and intensional predicates
shown as Pj;;. Atoms include two types:

1. Update atoms. ®p(xq, ..., X,_1)@x, that represent the inser-
tion or deletion of corresponding extensional predicates are
called update atoms.

2. Query atoms. The atoms except update atoms are called
query atoms. We call atom p(xq, ..., X,_1)@x, or its negation
—p(X1, ..., Xp—1)@x, as a literal. Negations are constrained to
extensional predicates, that is p(xq, ..., x,_1)@x, in body of
a rule must be extensional predicates. The constraint is the
simplest situation of applying negative atoms but it is enough
to satisfy with our requirement. For length of the paper, we do
not discuss the negative atoms or negative literals further here.

2.2.4. Programs and transactions

Extensional Database (EDB) consists of ground atoms that
represent database status. And Intensional Database (IDB) consists
of the rule below:

h@e < u,@eq, ..., u;@e, , Dm@ep,. (2)

In Eq. (2), his arandom query atom, p;(k+ 1 < i < m) isarandom
query literal, and u;(1 < j < k) is a random update atom.

Transaction (query) T is a kind of rule without head that has the
form:

Pi+1@ejiq, ...

Lll@E‘], ey uk@ek, ,pm@em (3)

where pi(k + 1 < i < m) is a query literal, and u;(1 <
j < k) is a update atom. We call the set of query literal in
T as query transaction of T. And call the update set an update
transaction brought by execution of transaction T. The paper
uses ?—(u;@eq, . . ., u@ey, pyr1@eyi1, . .., pm@e;,) torepresent a
transaction or query. A shortened form representing a transaction
with the same suffix is given as follows:

{T1}@ey, ..., {Th}@e,. (4)

Pkr1@epyq, ...

If all the entities in a transaction T are e, we call the transaction
a single transaction on entity e. In Eq. (4), all T;(1 < j < m)
can be looked on as a single transaction, the same as traditional
transaction. Sometimes, we omit the entity suffix in a single
transaction. In addition, we require the rules in a program are safe,
which means all variables occurring in the head also appear in the
body and any variables in the body must appear in a sub-goal that is
not a negative or the variables come from a finite domain. The safe
rules guarantee all variables are restricted, which prevent that an
unrestricted variable brings rules or facts that cannot be controlled
by the database.

Download English Version:

https://daneshyari.com/en/article/4951590

Download Persian Version:

https://daneshyari.com/article/4951590

Daneshyari.com

https://daneshyari.com/en/article/4951590
https://daneshyari.com/article/4951590
https://daneshyari.com

