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• We prove that the complete binary tree can be embedded with dilation 2, congestion 1, expansion 1, and load 1 into Locally twisted cube.
• We present three effective algorithms for fault-tolerant embedding of complete binary trees in locally twisted cubes with respect to one faulty node,

two faulty node, and any faulty set F of 2 < |F | ≤ 2n−1 nodes, respectively.
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a b s t r a c t

The complete binary tree is an important network structure for parallel and distributed computing, which
has many nice properties and is often used to be embedded into other interconnection architectures. The
locally twisted cube LTQn is an important variant of the hypercube Qn. It has many better properties than
Qn with the same number of edges and vertices. The main results obtained in this paper are: (1) The com-
plete binary tree CBTn rooted at an arbitrary vertex of LTQn can be embedded with dilation 2 and conges-
tion 1 into LTQn. (2) When there exists only one faulty node in LTQn, both the dilation and congestion will
become 2 after reconfiguring CBTn. (3) When there exist two faulty nodes in LTQn, then both the dilation
and congestionwill become3 after reconfiguringCBTn. (4) For any faulty set F of LTQn with 2 < |F | ≤ 2n−1,
both the dilation and congestion will become 3 after reconfiguring CBTn under certain constraints.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Interconnection architecture is an important component in
parallel computing systems, which can generally be represented
by a simple graph G = (V , E), where V is the vertex set and E is the
edge set. In this paper,we always refer to a graph as a simple graph.

Given two graphs G = (VG, EG) and H = (VH , EH), an
embedding from G to H is an injection f from VG to VH . We call G

✩ Some preliminary results were published at MSN 2015 (Liu et al., 2015). In this
version, we enhance results that fault-tolerant embedding of complete binary trees
are further considered the case when the number of faulty nodes is more than two
and the corresponding algorithms are presented.
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the guest graph andH the host graphwith respect to the embedding
f . Many applications, such as architecture simulation, processor
allocation, VLSI chip design can be modeled as a graph embedding
problem [1,2,20,32,38].

The dilation and expansion are two important metrics to mea-
sure the performance of an embedding. The dilation of embed-
ding f is defined as dil(G,H, f ) = max{dist(H, f (x), f (y))|(x, y) ∈
EG}, whichmeasures the communicationdelay,where dist(H, f (x),
f (y)) denotes the distance between the two vertices f (x) and f (y)
in H . The congestion of embedding f is defined as C(G,H, f ) =
max{C(e)|e ∈ EH}, which measures queuing delay of messages,
where C(e) denotes the number of edges in Gmapped to a path in
H that includes e. It is possible that the dilation and congestion of
an embedding impact each other. Hence, we have to consider the
tradeoff between the dilation and congestion of an embedding.

The hypercubes are one of themost popular interconnection ar-
chitectures, because theyhavemany advantageous properties such
as comparably lower vertex degree and diameter, higher connec-
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tivity and symmetry. To achieve smaller diameter with the same
number of vertices and edges as the hypercubes, many variants
of the hypercubes have been proposed, such as crossed cubes [7],
Maöbius cubes [6], twisted cubes [15], and parity cubes [35], etc.
The n-dimensional locally twisted cube (denoted by LTQ n), pro-
posed by Yang et al. [37], is conceptually closer to hypercube than
existing variants. It has many attractive features superior to those
of the n-dimensional hypercube (denoted by Qn), such as the di-
ameter is only about half of that of Qn, which means the commu-
nication delay between any two vertices decrease by almost a half
under the worst case. Recently, some important properties of lo-
cally twisted cubes, such as Hamiltonicity, pancyclicity, restricted
connectivity, and embedding capabilities, have been deeply inves-
tigated in the literature [12,36,39,25,16,18,17].

Paths, cycles, meshes and trees are the common networks
often used as guest graphs in many graph embeddings [9,24,
34,8,4]. Due to the desirable performance and wide applications
of the complete binary tree, its embeddability into various
interconnection architectures catches even more attention. So
far, much work about the embeddings of the complete binary
tree into meshes, star graphs, lines, grids, butterfly networks
and hypercubes has been explored in the literature [10,33,23,
27,11,14]. However, embeddings of the complete binary tree
into a few of all the existing hypercube variants have been
studied. It has been proven that the complete binary tree can
be embedded with dilation 1 and expansion 1 into folded cubes,
enhanced cubes, crossed cubes, parity cubes, and Möbius cubes,
respectively [5,22,28,29]. It has been proven that the complete
binary tree cannot be embedded into a hypercube with dilation 1
and expansion 1, but it can be embedded into a hypercube with
either expansion 2 and dilation 1 or with expansion 1 and dilation
2 [31].

As the size of interconnection networks increases continuously,
dealing with networks with faulty elements becomes unavoidable.
In order to maintain the reliability of networks, whenever a
node is found to be faulty, it should be replaced by a fault-free
node. Therefore, it is important to reconfigure a guest graph in
a faulty host graph where all faulty nodes have been replaced.
It means to find a fault-tolerant embedding of a guest graph
into host graph. Much work about fault-tolerant embeddings of
the complete binary tree into meshes, hypercubes, star graphs,
complete transposition graphs and bubblesort graphs has been
explored in the literature [10,3,26,19].

In this paper, we study the embedding of complete binary trees
into locally twisted cubes. Firstly, we prove that the complete
binary trees rooted at an arbitrary vertex of LTQ n can be embedded
with dilation 2 and congestion 1 into LTQ n. Furthermore, we
present three effective algorithms for fault-tolerant embedding of
complete binary trees in locally twisted cubes. We prove that both
the dilation and congestion will become 2 after reconfiguring CBT n
when there exists only one faulty node in LTQ n, while both the
dilation and congestion will become 3 after reconfiguring CBT n
when there exist two faulty nodes in LTQ n. For any faulty set F of
LTQ n with 2 < |F | ≤ 2n−1, both the dilation and congestion will
become 3 after reconfiguring CBT n under certain constraints.

The rest of this paper is organized as follows: Section 2 provides
the preliminaries. Section 3 proves that the complete binary tree
CBT n can be embedded with dilation 2 and congestion 1 into n-
dimensional locally twisted cube. Section 4 proves that complete
binary trees can be reconfigured dynamically in locally twisted
cubes with low cost. Section 5 presents three effective algorithms
for fault-tolerant embedding of complete binary trees in locally
twisted cubes. The final section concludes this paper.

2. Preliminaries

In this section, we will give some terminologies, definitions
and basic lemmas used in this paper. Given two simple graphs
G = (VG, EG) and H = (VH , EH), H is said to be a subgraph of G if
VH ⊆ VG and EH ⊆ EG. The subgraph induced by V ′ in G is denoted
by G[V ′], where V ′ ⊆ VG.

For any integer n ≥ 1, a binary string x of length n is denoted
by xn−1 . . . xi . . . x1x0(0 ≤ i ≤ n − 1), where xi ∈ {0, 1} is said to
be the ith bit of x and xn−1 . . . xk(1 ≤ k ≤ n − 1) is called a prefix
of x, and furthermore, x can be written as (xn−1 . . . xk)xk−1 . . . x1x0.
The ith bit of x can also be denoted as bit(x, i). The complement of
xi is denoted by xi = 1− xi. The length of x is denoted by |x|.

The n-dimensional locally twisted cube, denoted by LTQ n, is an
n-regular graph of 2n vertices and 2n edges. Every vertex of LTQ n
is identified by a unique binary string of length n. We adopt the
recursive definition of locally twisted cube from [37].

Definition 1 ([37]). Let n ≥ 2. The n-dimensional locally twisted
cube, LTQ n, is defined recursively as follows.

(1) LTQ 2 is a graph consisting of four vertices labeled with 00, 01,
10, and 11, respectively, connected by four edges (00, 01), (00,
10), (01, 11), and (10, 11);

(2) For n ≥ 3, LTQ n is built from two disjoint copies of LTQ n−1
according to the following steps. Let LTQ 0

n−1 denote the graph
obtained by prefixing the label of each vertex of one copy
of LTQ n−1 with 0, let LTQ 1

n−1 denote the graph obtained by
prefixing the label of each vertex of the other copy of LTQ n−1
with 1. Connect each vertex x = 0xn−2xn−3 . . . x0 of LTQ 0

n−1
with the vertex 1(xn−2+ x0)xn−3 . . . x0 of LTQ 1

n−1 with an edge,
where ’+’ represents the modulo 2 addition.

Fig. 1(a) and (b) illustrate LTQ 3 and LTQ 4, respectively.
By Definition 1, we can easily check if a given pair of vertices

are adjacent in LTQ n. When two adjacent vertices u and v have a
leftmost differing bit at position i, we say that v is the i-neighbor
of u, denoted by Ni(u), the edge (u, v) is an i-dimensional edge,
or u and v are adjacent along dimension i. For example, letting
u = 0101, then N0(u) = 0100, N3(u) = 1001.

Yang et al. have found an isomorphic expression of LTQ n.
For example, two graphs shown in Fig. 2(a) and (b) are other
expressions of LTQ 3 and LTQ 4, respectively. In general, they have
proven the following result.

Lemma 2 ([37]). Let Ql be the graph obtained from Qn−1 by suffixing
the labels of all vertices with 0, Qr be the graph obtained from a graph
isomorphic to Qn−1 by suffixing the labels of all vertices with 1. Then
LTQ n is isomorphic to the graph obtained from Ql and Qr by adding
a perfect matching M between them, denoted by LTQ n = Ql ⊕ Qr ,
whereM is the set of edges by linking two vertices with difference only
suffixes.

The complete binary tree has many nice properties than other
binary trees. The perfect binary tree may be seen as a complete
binary tree with 2n

− 1 nodes, where n is its height. It is regular
and each internal vertex has exactly two children, and all leaves
have the same level. It is more important that each binary tree
is a subtree of the perfect binary tree with the same height. In
this paper, we use perfect binary trees and complete binary trees
interchangeably.

The double-rooted complete binary tree of height n (or briefly
a DT n) is a graph consisting of two complete binary trees of height
n − 1 whose roots are connected by a path of length 3. Clearly,
a double-rooted complete binary tree of height n has exactly 2n

vertices. Note that if we identify both roots of a double-rooted
complete binary tree, we obtain a complete binary tree of the same
height.
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