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h i g h l i g h t s

• Higher dimensional EJ network can be constructed based on lower dimensional EJ networks.
• The distance distribution of the nodes in the network is given.
• It is shown that higher dimensional EJ networks cost less and have more nodes than the GHC networks.
• The broadcasting algorithm for higher dimensional EJ network is discussed.
• A method of construction of edge disjoint Hamiltonian cycles is given with their Gray codes.
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a b s t r a c t

Anefficient interconnection topology called Eisenstein–Jacobi (EJ) networkhas beenproposed inMartínez
et al. (2008). In this paper this concept is generalized to higher dimensions. Important properties such
as distance distribution and the decomposition of higher dimensional EJ networks into edge-disjoint
Hamiltonian cycles are explored in this paper. In addition, an optimal shortest path routing algorithm
and a one-to-all broadcast algorithm for higher dimensional EJ networks are given. Further, we give
comparisons between higher EJ networks and Generalized Hypercube (GHC) networks and we show that
higher EJ networks cost less and have more nodes than GHC networks.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Hexagonal networks are modeled by planar graphs. Another
network called honeycomb can also be seen as a hexagonal net-
work. The duality between graphs corresponding to hexagonal
and honeycomb networks causes some inconsistency in the name
selection. There exist three regular plane tessellations: triangu-
lar, square, and hexagonal, which are the basis for the design
of some interconnection networks. Hexagonal networks are six-
degree based on regular triangular tessellations, whereas, hon-
eycomb networks are three-degree based on regular hexagonal
tessellations. Fig. 1 illustrates both networks, the solid lines repre-
sent the links of the hexagonal network and the dashed lines repre-
sent the links of the honeycomb network where the circles are the
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nodes of the corresponding network. Furthermore, mesh and tori
networks are based on four-degree regular square tessellations.

There are many applications for hexagonal networks. For ex-
ample, the University of Michigan developed the hexagonal torus
in their HARTS project [30]. Further, hexagonal networks were
used in image processing [28] to sampling images hexagonally
rather than rectangularly, which gives higher angular resolution
and more efficient sampling. They were also used in computer
graphics [25], geological mapping [31], and cellular networks [27].

There exist three definitions for higher dimensional hexagonal
networks. As discussed in [14], the first definition mentioned
in [10] defines the 2D hexagonal network based on triangular
tessellations. The 3D hexagonal network is built based on cubes
of size t either limited by horizontal and vertical planes or limited
by a diagonal plane. However, it was not a good approach since
there is no formula for computing the distance between two
nodes. In addition, in that network, the edges of the same length
cannot be built. Also, the proposed 3D hexagonal mesh of size
two should contain triangles, but they are both right angle and
equilateral. Further, the second definition mentioned in [27,19],
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Fig. 1. Hexagonal and honeycomb networks.

Fig. 2. Generalized Hypercube Q5 .

a 3D hexagonal mesh was modeled based on the concept of
hypercube networks, which is not a natural generalization of 2D
hexagonal mesh. The third definition was discussed in [14], which
is a 3D hexagonal network based on the union of 2D hexagonal
networks, but the authors did not go beyond the third dimension.
In addition, their model is neither symmetric nor regular network,
i.e., some nodes have different degree.

An efficient interconnection topology called Eisenstein–Jacobi
(EJ) network has been proposed in [26]. An EJ network is
mathematically defined and developed based on EJ integers. There
are two apparent advantages of these networks: they are degree six
symmetric networks and they are generalizations of the hexagonal
mesh topology developed earlier in [11,16,23]. Another advantage
of EJ networks is that they are used in graph theory as graphs
that lead to a newmethod for constructing some classes of perfect
codes, which are used to solve the problem of finding perfect
dominating set [26,21]. Also, some applications of this network
such as routing, broadcasting, and Hamiltonian cycles have been
studied in [1,18,22].

The performance and cost of an interconnection network are
based on some important characteristics such as the number of
the nodes in the network; the degree of a node, which is the
number of links per node; and the diameter of the network, which
is known to be the maximum length of the shortest paths between
any two nodes in the network and it corresponds to the worst
communication time in the network. Usually, a network with
higher degree has lower diameter than the network with lower
degree. Further, the cost of the network is defined as diameter ×

degree.
In [29,9], the authors showed that higher dimensional Gaussian

networks outperform the multi-dimensional toroidal networks. In
this paper, we extend the EJ network beyond three dimensions
and our approach is similar to the approach used in [29,9]. In
addition, we show that the proposed network has lower cost
than the Generalized Hypercube (GHC) [7]. Further, we give some
communication algorithms such as shortest-path routing and
broadcasting. We also show how to decompose this network into
edge-disjoint Hamiltonian cycles.

The rest of the paper is organized as follows. Section 2
briefly reviews some literature that are relevant to the rest of
the paper such as graph cross product, Generalized Hypercube
networks, and topological properties of the original EJ networks.
The definition and some basic topological properties of higher
dimensional EJ networks are given in Section 3. Next, Section 4
provides a shortest-path routing algorithm for the network, while

the distance distribution and the comparisons between higher
EJ and GHC networks are given in Section 5. Section 6 shows
how broadcasting can be done. Finding edge-disjoint Hamiltonian
cycles is described in Section 7. The paper is concluded in Section 8.

2. Background

In this section, we review the cross product operation between
two graphs since it is used in this paper. In addition, we give the
definitions of Generalized Hypercube networks and EJ networks.

2.1. The cross product

The cross product between two graphs is defined as follows.

Definition 1 ([15]). The cross product between two graphs G1 =

(V1, E1) and G2 = (V2, E2) is denoted by G1 ⊗ G2 and is defined as
the graph G(V , E), where

1. V = {(u, v) | u ∈ V1, v ∈ V2}

2. E = {((u1, v1), (u2, v2))|((u1, u2) ∈ E1 and v1 = v2) or
((v1, v2) ∈ E2 and u1 = u2)}.

For any finite set of networksG0, . . . ,Gn, their cross product can
be inductively defined as:

Gn ⊗ Gn−1 ⊗ · · · ⊗ G0 = Gn ⊗ (Gn−1 ⊗ · · · ⊗ G0).

This is used to define an n-dimensional Eisenstein–Jacobi net-
work EJ(n)α in Section 3 as the n-fold cross product of the Eisen-
stein–Jacobi network EJα .

2.2. Generalized Hypercube networks

A single dimensional GHC network [7] Qk, k is the size of
the dimension, is a complete graph where all nodes are directly
connected to each other. The degree of the network is k− 1 and its
diameter is 1. The nodes are addressed from 0 to k−1. Fig. 2 shows
an example of Q5.

The multi-dimensional GHC Qkn−1×kn−1×···×k0 is based on the
cross products between single dimensional GHC networks and it
is defined as follows.

Qkn−1×kn−1×···×k0 = Qkn−1 ⊗ Qkn−2 ⊗ · · · ⊗ Q0

where n is the number of dimensions, which is the diameter of the
network; and ki, for 0 ≤ i ≤ n− 1, is the size of the ith dimension.
The node degree in the network is equal to

n−1
i=0 ki−1. Each nodes

in the network is addressed usingmixed radix number system and
it is labeled as n-tuples, (xn−1, xn−2, . . . , x0) ∈ Zkn−1 × Zkn−2 ×

· · · × Zk0 . That is, (xn−1, xn−2, . . . , x0) = xn−1(kn−2 × kn−3 × · · · ×

k0) + xn−2(kn−3 × kn−4 × · · · × k0) + · · · + x1k0 + x0. Each node
X = (xn−1, xn−2, . . . , xi+1, xi, xi−1, . . . , x1, x0) is connected to the
nodes (xn−1, xn−2, . . . , xi+1, x′

i, xi−1, . . . , x1, x0) for all of 0 ≤ i ≤

n−1, where x′

i takes all integer values between 0 and ki −1 except
xi. Thus, two nodes (xn−1, xn−2, . . . , x0) and (yn−1, yn−2, . . . , y0)
are neighbors if the Hamming distance between them is 1. The
Hamming distance (DH) between two n-tuples is the number of
positions they differ. For example, DH((2214), (2234)) = 1 and
DH((3112), (2222)) = 3. Fig. 3 illustrates an example of Q5×5.

2.3. Eisenstein–Jacobi networks

EJ networks are designed based on the concept of EJ inte-
gers [21]. The set of Eisenstein–Jacobi integers Z[ρ] is defined as

Z[ρ] = {x + yρ | x, y ∈ Z}
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