
J. Parallel Distrib. Comput. 102 (2017) 163–174

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

An adaptive cache coherence protocol: Trading storage for traffic
Lucia G. Menezo ∗, Valentin Puente, Jose-Angel Gregorio
University of Cantabria, 39005, Santander, Spain

h i g h l i g h t s

• A new adaptive non-inclusive cache coherence protocol.
• Combination of snoop-based and directory-based coherence protocol.
• Non-inclusive directory able to reconstruct sharing information when needed.
• Adaptive filter to minimize coherence traffic.

a r t i c l e i n f o

Article history:
Received 12 February 2016
Received in revised form
15 November 2016
Accepted 18 December 2016
Available online 28 December 2016

Keywords:
Coherence protocol
Multicore
CMPs

a b s t r a c t

This paper introduces a new adaptive cache coherence protocol which minimizes energy requirements
and guarantees scalability. It includes two complementary parts: a non-inclusive sparse-directory to track
only actively shared blocks and a structure to determine the presence of a block in the private caches
based on an improved counting bloom filter. It uses token counting to preserve the system correctness, to
improve performance and to reduce the implementation complexity. Combining all these characteristics,
the proposal has a low storage overhead and is able to suppress most of the traffic inherent to snoop-
based protocols and reduce the size of directory-based structures. Using a capacity to track only 40% of all
the blocks allocated in the private caches, this coherence protocol is able to achieve better performance
than an over-provisioned sparse-directory with a capacity to track 160% of the blocks kept in private
caches. The complementarity of both structures enables the coherence controller to change dynamically
the way the storage available is dedicated according to the data-sharing properties of the application.
Thus, applications with high-sharing degree will need more directory space while low-sharing degree
patterns will need more private block-presence space to include more information. With only 5% of the
private cache entries tracked, the average performance degradation is less than 8% compared to a 160%
over-provisioned sparse-directory.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Cache coherence is a huge challenge of future chipmultiproces-
sors (CMPs). In order to maintain the performance improvement,
the number of cores will keep on increasing and the pressure on
the bandwidth off-chip will continue to grow. One way of alleviat-
ing this problem comes by increasing the amount of memory on-
chip. However, this increased amount of on-chipmemoryprovokes
longer access times, which need to be palliated using a more com-
plex memory hierarchy.

It is the coherence protocol’s responsibility to make sure that
all potential copies of any block that are scattered over different

∗ Corresponding author.
E-mail addresses: gregoriol@unican.es (L.G. Menezo), vpuente@unican.es

(V. Puente), monaster@unican.es (J.-A. Gregorio).

caches are coherent, i.e. any processor should see the same content
of all the memory locations under any circumstance. There is no
universal solution and the chosen one will depend on the system.
When the number of cores is low, the chosen solution is to use
broadcast-based coherence protocols. Actually, this is the method
used by current high-performance commercial systems [14,8,16].
Its main advantages come with better performance and lower
complexity when compared with other coherence proposals such
as directory-based coherence protocols. However, this is achieved
with an increment in the total amount of traffic and cache snoops,
which will decrease the energy efficiency of the system. It is
clear that when the size of the system grows, the impact of this
disadvantage will become unsustainable. A more subtle effect,
but not less relevant, is the on-chip resource contention that
characterizes these protocols. As a result, on-chip access latency
can be affected, perhaps degrading the CMP performance under
some particular usage scenarios.

http://dx.doi.org/10.1016/j.jpdc.2016.12.020
0743-7315/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jpdc.2016.12.020
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2016.12.020&domain=pdf
mailto:gregoriol@unican.es
mailto:vpuente@unican.es
mailto:monaster@unican.es
http://dx.doi.org/10.1016/j.jpdc.2016.12.020


164 L.G. Menezo et al. / J. Parallel Distrib. Comput. 102 (2017) 163–174

On the other hand, there are directory-based coherence
protocols. Broadcast cache snoops are avoided by using a specific
structure to track the block’s copies present in the cache hierarchy.
However, with this solution new limitations emerge. On the one
hand, this approach demands inclusivity. This property requires
that the contents of all the smaller caches of a multi-level cache
hierarchy have to be a subset of the last-level cache (LLC).
When a line is evicted from the LLC, inclusion is enforced by
removing that line from all the caches in the hierarchy where it
is present. Although from a performance and a cost stand point
of view non-inclusiveness is desired, the common assumption
is that inclusiveness is difficult to avoid in order to maintain
coherence protocol complexity limited. On the other hand, the
associativity needed in the directory increases as the number of
cores does, making solutions like the duplicate-tag unviable [20].
The solution adopted to overcome this issue is to overprovision
the directory to minimize unnecessary evictions in the private
caches due to directory conflicts under constrained (and realistic)
associativity [15]. However, this method also causes scalability
problems as the private cache sizes increase and so the number
of tracked blocks does too [35].

From this standpoint, it would appear that a pure coherence
protocol might not be the most suitable approach to tackle
the problem. Intuitively, it seems that the coherence protocol
should somehow hybridize the best of both types: trying to
attain the performance effectiveness and implementation cost of
a broadcast-based coherence protocol with the energy efficiency
of a directory-based one. This paper addresses this task and
successfully attains a new coherence protocol, denoted Flask
(FiLtered and Allocated just by Shared block Keeper) coherence,
which can scale as a directory-based coherence protocol does,
while achieving cache effectiveness similar to a broadcast-based
one. A previous version of this paper was presented in [28]. Now,
several additional explanations with rewritten sections have been
added to clarify the description proposal and a more realistic
memory model has been used to produce new results, generating
a complete and self-contained work.

Flask is based on the idea of having two complementary
structures working together on one logical framework. One of
them, called Dir-P, which is basically an improved Bloom filter [6]
to determine the presence or not of any block in the private
caches. The other one, called Dir-S, works as a sparse directory
and tracks the blocks that are actively shared among the cores.
The whole system uses token counting to guarantee correctness
while maintaining the complexity limited. The whole framework
keeps detailed information about the location of data that are being
actively sharedwhile recording only the presence of the blocks that
are allocated privately in the caches (with no sharers), which is the
most common case.

In a directory-based protocol every block inside a private cache
must be tracked by using an entry in the directory. This is known
as directory inclusivity and it means that if a new block has to be
tracked and there are no available entries in the directory, one
of the existing ones has to be replaced. Thus, the block being
tracked by the replace-to-be entry has to be invalidated in all the
private caches where it is present. However, our protocol is able to
handle incomplete information given by the framework, i.e. with
the information of both structures, the protocol does not have
exact information. This circumvents directory inclusivity and so
it avoids the invalidation of blocks in the private caches due to
conflicts in the directory structure. When a shared block is not
being tracked by Dir-S, after a new request to the controller, a
broadcast is sent to all coherence agents (the system structures
in charge of the coherence maintenance). The replies are used
to reconstruct the corresponding entry in the directory. This
approach of reconstructing the directory entries on demand was

first introduced by Mosaic [27]. Nevertheless Mosaic allocates
directory entries for any on-chip miss (i.e. for both private and
shared blocks) and it always generates a broadcast if there is amiss
in the directory. On the contrary, the Flask structureDir-P includes
the (probable) presence informationwhich avoids the unnecessary
search for the block inside the chip. If the block is not present inside
the chip, i.e.Dir-P does not include the block’s information, it sends
the request directly to the memory controller. Thus, nearly all of
the off-chip requests are not delayed. In the least common case,
misses in a private cache of an actively shared block are always
tracked by Dir-P and dealt with through a multicast to the on-chip
coherence agents inside the chip, but avoiding unnecessary off-
chip requests.

Finally, the framework introduced allows us to dynamically
assign, according to the sharing degree of the running workload,
storage capacity in the coherence controller either to track shared
blocks in Dir-S or to identify privately held blocks in Dir-P. This
characteristic enables the area dedicated to both structures to be
reduced considerably.

The main contributions of the paper are as follows:

• The hybridization of a directory-based and a broadcast-based
coherence protocol in a unified logic substrate with optimized
implementation and energy costs.

• The proposed strategy achieves the performance of a conven-
tional, over-provisioned sparse directory, while tracking less
than 40% of the private cache entries. Similarly, it improves on
Token coherence protocol performance by 10% and energy de-
lay product by 20%.

• With only 5% of tracked private cache entries, average
performance degradation is less than 10%with respect to a 160%
over-provisioned sparse-directory.

• We show that, using an adaptive storage assignation at the
coherence controller according to the workload properties, we
can reduce even further the resources of the proposal. Matching
a sparse-directory performance while tracking only 20% of
private cache entries.

2. Motivation

2.1. Directory and broadcast coherence approaches

While directory-based protocols seem to be an attractive
approach to enforce cache coherence in a CMP, when the number
of cores is high and the on-chip hierarchy complexity grows, the
directory is difficult to scale. Themain cause is the large number of
blocks that have to be tracked as the caches sizes grow. In an on-
chip cache, similar to state-of-the-art systems [14,16,9], in order
to close the gap in the access time between a small L1 (dominated
by processor clock cycle) and a very large LLC (dominated by main
memory access time), at least one intermediate level is required.
As a consequence the number of blocks that the directory has to
track is even larger. Additionally, those intermediate levels usually
have a substantial associativity. Moreover, recent designs [14,16]
also require a large associativity for L1. In summary, the number of
blocks that can be mapped in a set of the directory is high.

Although in some early CMPs [20] the directory has enough
capacity to keep information about all the blocks allocated in
the private caches, when the number of cores or private cache
complexity and size grows, this is not feasible due to the enormous
associativity required by the directory. However, reducing this
associativity increases the eviction of blocks in the private caches
due to conflicts in the directory. A rule of thumb [15] suggests
that over-provisioning the directory with twice the capacity
required to track the private caches will diminish the number
of invalidations [11]. Nevertheless, the larger number of tracked



Download	English	Version:

https://daneshyari.com/en/article/4951680

Download	Persian	Version:

https://daneshyari.com/article/4951680

Daneshyari.com

https://daneshyari.com/en/article/4951680
https://daneshyari.com/article/4951680
https://daneshyari.com/

