J. Parallel Distrib. Comput. 102 (2017) 213-228

Contents lists available at ScienceDirect

PARALLELAND
DISTRIBUTED
COMPUTING

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Two-level main memory co-design: Multi-threaded algorithmic @CmssMark
primitives, analysis, and simulation”

Michael A. Bender?, Jonathan W. Berry ®*, Simon D. Hammond®, K. Scott Hemmert®,
Samuel McCauley?, Branden MooreP, Benjamin Moseley ¢, Cynthia A. Phillips®,
David Resnick®, Arun Rodrigues”

2 Stony Brook University, Stony Brook, NY 11794-2424, USA

b Center for Computing Research, Sandia National Laboratories, Albuquerque, NM 87185, USA
¢ Washington University in St. Louis, St. Louis, MO 63130, USA

HIGHLIGHTS

Emerging architectures feature high-bandwidth scratchpad memory that is not cache.
We adapt a classical external-memory model to this context.

We design and analyze algorithms for sorting and k-means using this model.

We validate our predictions with simulation and/or a custom machine.

ARTICLE INFO

ABSTRACT

Article history:

Received 29 October 2015
Received in revised form

2 September 2016

Accepted 3 December 2016
Available online 3 January 2017

Keywords:

Two-level memory
High-bandwidth memory
Sorting

k-means clustering

A challenge in computer architecture is that processors often cannot be fed data from DRAM as fast as
CPUs can consume it. Therefore, many applications are memory-bandwidth bound. With this motivation
and the realization that traditional architectures (with all DRAM reachable only via bus) are insufficient to
feed groups of modern processing units, vendors have introduced a variety of non-DDR 3D memory tech-
nologies (Hybrid Memory Cube (HMC),Wide /0O 2, High Bandwidth Memory (HBM)). These offer higher
bandwidth and lower power by stacking DRAM chips on the processor or nearby on a silicon interposer.
We will call these solutions “near-memory,” and if user-addressable, “scratchpad.” High-performance
systems on the market now offer two levels of main memory: near-memory on package and traditional
DRAM further away. In the near term we expect the latencies near-memory and DRAM to be similar. Thus,
itis natural to think of near-memory as another module on the DRAM level of the memory hierarchy. Ven-
dors are expected to offer modes in which the near memory is used as cache, but we believe that this will
be inefficient.

In this paper, we explore the design space for a user-controlled multi-level main memory. Our work
identifies situations in which rewriting application kernels can provide significant performance gains
when using near-memory. We present algorithms designed for two-level main memory, using divide-
and-conquer to partition computations and streaming to exploit data locality. We consider algorithms
for the fundamental application of sorting and for the data analysis kernel k-means. Our algorithms
asymptotically reduce memory-block transfers under certain architectural parameter settings. We use
and extend Sandia National Laboratories’ SST simulation capability to demonstrate the relationship be-
tween increased bandwidth and improved algorithmic performance. Memory access counts from sim-
ulations corroborate predicted performance improvements for our sorting algorithm. In contrast, the
k-means algorithm is generally CPU bound and does not improve when using near-memory except un-
der extreme conditions. These conditions require large instances that rule out SST simulation, but we
demonstrate improvements by running on a customized machine with high and low bandwidth memory.
These case studies in co-design serve as positive and cautionary templates, respectively, for the major task

* This was selected as a best Paper from International Parallel and Distributed Processing Symposium (IPDPS) 2015.

* Corresponding author.

E-mail addresses: bender@cs.stonybrook.edu (M.A. Bender), jberry@sandia.gov (J.W. Berry), sdhammo@sandia.gov (S.D. Hammond), kshemme@sandia.gov
(K. Scott Hemmert), smccauley@cs.stonybrook.edu (S. McCauley), bjmoor@sandia.gov (B. Moore), moseleyb85@gmail.com (B. Moseley), caphill@sandia.gov (C.A. Phillips),
drresni@sandia.gov (D. Resnick), afrodni@sandia.gov (A. Rodrigues).

http://dx.doi.org/10.1016/j.jpdc.2016.12.009
0743-7315/© 2017 Elsevier Inc. All rights reserved.


http://dx.doi.org/10.1016/j.jpdc.2016.12.009
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2016.12.009&domain=pdf
mailto:bender@cs.stonybrook.edu
mailto:jberry@sandia.gov
mailto:sdhammo@sandia.gov
mailto:kshemme@sandia.gov
mailto:smccauley@cs.stonybrook.edu
mailto:bjmoor@sandia.gov
mailto:moseleyb85@gmail.com
mailto:caphill@sandia.gov
mailto:drresni@sandia.gov
mailto:afrodni@sandia.gov
http://dx.doi.org/10.1016/j.jpdc.2016.12.009

214 M.A. Bender et al. /. Parallel Distrib. Comput. 102 (2017) 213-228

of optimizing the computational kernels of many fundamental applications for two-level main memory

systems.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Recently vendors have proposed a new approach to improve
memory performance by increasing the bandwidth between cache
and memory [26,27]. The approach is to bond memory directly to
the processor chip or to place it nearby on a silicon interposer.
By placing memory close to the processor, there can be a higher
number of connections between the memory and caches, enabling
higher bandwidth than current technologies. While the term
scratchpad is overloaded within the computer architecture field,
we use it throughout this paper to describe a high-bandwidth, local
memory that can be used as a temporary storage location. Note
that this term also refers to high speed internal memory used for
temporary calculations [41,8] which is a different technology than
that discussed in this paper.

The scratchpad cannot replace DRAM entirely. Due to the phys-
ical and cost constraints of adding the memory directly to the chip,
the scratchpad cannot be as large as DRAM, although it will be
much larger than cache, having gigabytes of storage capacity. Since
the scratchpad is smaller than main memory, it does not fully re-
place main memory, but instead augments the existing memory
hierarchy.

The scratchpad has other limitations besides its size. First,
the scratchpad does not significantly improve upon the latency
of DRAM. Therefore, the scratchpad is not designed to accel-
erate memory-latency-bound applications, but rather memory-
bandwidth-bound ones. Second, adding a scratchpad does not
improve the bandwidth between DRAM and cache. Thus, the
scratchpad will not accelerate a computation that consists of a sin-
gle scan of a large chunk of data that resides in DRAM.

This gives rise to a new multi-level memory hierarchy where
two of the components - the DRAM and the scratchpad- work in
parallel. We view the DRAM and scratchpad to be on the same level
of the hierarchy because their access times are similar. There is a
tradeoff between the memories: the scratchpad has limited space
and the DRAM has limited bandwidth.

Since the scratchpad does not have its own level in the cache
hierarchy, when a record is evicted from the cache there is an
algorithmic decision whether to place the record in the scratchpad
or directly into the DRAM. In the currently-proposed architecture
designs, this decision is user-controlled.

Under the assumption that the memory is user-controlled, an
algorithm must coordinate memory accesses from main memory
and the scratchpad. Ideally the faster bandwidth of the scratchpad
can be leveraged to alleviate the bandwidth bottleneck in appli-
cations. Unfortunately, known algorithmics do not directly apply
to the proposed two-level main-memory architecture. The ques-
tion looms, can an algorithm use the higher bandwidth scratch-
pad memory to improve performance? Unless this question is
answered positively, the proposed architecture, with its additional
complexity and manufacturing cost, is not viable.

Our interest in this problem comes from Trinity [25], the latest
NNSA (National Nuclear Security Administration) supercomputer
architecture. This supercomputer uses the Knight's Landing
processor from Intel with Micron memory. This processor chip
uses such a two-level memory [27]. The mission for the Center of
Excellence for Application Transition [26], a collaboration between

NNSA Labs (Sandia, Los Alamos, and Lawrence Livermore), Intel,
and Cray, is to ensure applications can use these new architectures.

1.1. Results

In this paper we introduce an algorithmic model of the scratch-
pad architecture, generalizing existing sequential and parallel
external-memory models [1,4]. (See Section 9 for a brief back-
ground on the architectural design and motivation for the scratch-
pad.) We introduce theoretically optimal scratchpad-optimized,
sequential and parallel sorting algorithms. We report on hardware
simulations varying the relative-bandwidth parameter. These ex-
periments suggest that the scratchpad will improve running
times for sorting on actual scratchpad-enhanced hardware for a
sufficient number of cores and sufficiently large bandwidth im-
provement. We also study the data analysis technique k-means
clustering for contrast.

Theoretical contributions

We give an algorithmic model of the scratchpad, which gen-
eralizes existing sequential and parallel external-memory models
[1,4]. In our generalization, we allow two different block sizes, B
and pB (p > 1) to model the bandwidths of DRAM and the larger
bandwidth of the scratchpad. Specifically, o > 1 is the relative in-
crease in bandwidth of the scratchpad in comparison to DRAM.

We give scratchpad-aware algorithms for two basic problems:
sorting and k-means clustering. In both cases, we obtain asymp-
totic reductions in memory block transfers compared to conven-
tional algorithms. However, we find that our sorting algorithms
are more practical than our k-means algorithms. Our experience in
designing and experimenting with these algorithms has led us to
enumerate several basic properties of successful scratchpad-aware
algorithms. We present these in Section 1.1.

We exhibit, under reasonable architectural assumptions of
the scratchpad, sorting algorithms that can achieve speedups
proportional to p over the state-of-the-art sorting algorithms that
use only far DRAM. We begin by introducing a sequential algorithm
for sorting, and then generalize to the multiprocessor (single node)
setting. We complement this result by giving a matching lower
bound in our theoretical model. Our algorithms supply theoretical
evidence that the proposed architecture can indeed speed up
fundamental applications.

Algorithm engineering contributions

For an application to benefit from a scratchpad-enhanced
memory architecture, good data locality is necessary, but it is
not sufficient. For example, consider a program that scans a large
array once. This program has great data locality. However, running
this program on a memory system with a scratchpad will not
help. Moving the data to the scratchpad before computation is
effectively just an extra copy.

The following definitions help describe the conditions under
which a scratchpad-enhanced memory can help. A computation is
memory bound if the limiting factor in its running time is the time
to feed data to the processors. Adding more compute power does
not improve runtime in any significant way, but delivering data
faster will. A process is compute bound if the limiting factor is the



Download English Version:

https://daneshyari.com/en/article/4951684

Download Persian Version:

https://daneshyari.com/article/4951684

Daneshyari.com


https://daneshyari.com/en/article/4951684
https://daneshyari.com/article/4951684
https://daneshyari.com

