
J. Parallel Distrib. Comput. 105 (2017) 18–30

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Pedagogy and tools for teaching parallel computing at the sophomore
undergraduate level
Max Grossman ∗, Maha Aziz, Heng Chi, Anant Tibrewal, Shams Imam, Vivek Sarkar
Department of Computer Science, Rice University, 6100 Main St, Houston, TX 77005, United States

h i g h l i g h t s

• An overview of parallel computing pedagogy at Rice University, including a unique approach to incrementally teaching parallel programming: from
abstract parallel concepts to hands-on experience with industry-standard frameworks.

• A description of the HJlib parallel programming library and its applicability to parallel programming education.
• A description of the motivation, design, and implementation of the Habanero Autograder, a tool for providing automated and immediate feedback to

students on programming assignments.
• A discussion of unexpected benefits from using the Habanero Autograder as part of Rice University’s core parallel computing curriculum.

a r t i c l e i n f o

Article history:
Received 15 June 2016
Received in revised form
5 December 2016
Accepted 30 December 2016
Available online 9 January 2017

Keywords:
Autograding
Parallel
MPI
Java
JVM
Education
Multi-threading
Tools
Pedagogy

a b s t r a c t

As the need for multicore-aware programmers rises in both science and industry, Computer Science
departments in universities around the USA are having to rethink their parallel computing curriculum.
At Rice University, this rethinking took the shape of COMP 322, an introductory parallel programming
course that is required for all Bachelors students. COMP 322 teaches students to reason about the behavior
of parallel programs, educating them in both the high level abstractions of task-parallel programming as
well as the nitty gritty details of working with threads in Java.

In this paper, we detail the structure, principles, and experiences of COMP 322, gained from 6 years
of teaching parallel programming to second-year undergraduates. We describe in detail two particularly
useful tools that have been integrated into the curriculum: the HJlibparallel programming library and the
Habanero Autograder for parallel programs.We present this workwith the hope that it will help augment
improvements to parallel computing education at other universities.

© 2017 Elsevier Inc. All rights reserved.

1. Background

At Rice University, COMP 322: Fundamentals of Parallel
Programming is the introductory parallel programming course for
all undergraduates. As a required course for both the Bachelor of
Arts and Bachelor of Science Computer Science degrees, COMP 322
sees approximately one hundred students each Spring semester
from a wide range of backgrounds and interests. Additionally,
COMP 322 is taken early in the curriculum,most commonly during
the Spring semester of students’ second year of the undergraduate
program. Hence, many of the assumptions that later parallel

∗ Corresponding author.
E-mail address: jmaxg3@gmail.com (M. Grossman).

programming courses make about prerequisites do not hold true
for COMP 322.

In this paper we use our experiences teaching COMP 322,
assisting in COMP 322 as teaching assistants, and taking COMP
322 as students to offer insights in to effectively teaching
parallel programming to students early in the undergraduate
CS curriculum. We also describe two tools that have become
fundamental parts of COMP 322 since their introduction, and
present qualitative and quantitative evidence of their effectiveness
in teaching parallel programming to second-year students.

1.1. An overview of COMP 322

COMP 322 introduces students to several basic concepts of
parallel programming and parallel algorithms. It follows a peda-
gogic approach that exposes students to intellectual challenges in

http://dx.doi.org/10.1016/j.jpdc.2016.12.026
0743-7315/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jpdc.2016.12.026
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2016.12.026&domain=pdf
mailto:jmaxg3@gmail.com
http://dx.doi.org/10.1016/j.jpdc.2016.12.026


M. Grossman et al. / J. Parallel Distrib. Comput. 105 (2017) 18–30 19

parallel software without enmeshing them in jargon and lower-
level details of today’s parallel systems.

The prerequisites for COMP 322 require that students have
taken three introductory courses in Computer Science prior to
enrolling.

The first, COMP 140: Computational Thinking, focuses on
teaching students fundamental skills for writing programs and
reasoning about their behavior. As an introductory course, COMP
140 focuses on Computer Science practicum using a case study-
based approach. Programming constructs and techniques are
introduced using simple but interesting algorithms and applying
them to real-world problems (e.g. Markov chains to compose
poetry). COMP 140 is taught in Python.

The second course, COMP 182: Algorithmic Thinking, teaches
students a rigorous approach to computational and scientific prob-
lem solving by ‘‘(1) understanding the problem; (2) formulating
the problem mathematically; (3) designing an algorithm; (4) im-
plementing the algorithm; and (5) solving the original scientific
problem’’ [20]. COMP 182 is students’ first rigorous introduction
to algorithms (e.g. dynamic programming, sorting algorithms) and
algorithmic asymptotic complexity analysis (e.g. Big-O notation).
COMP 182 is also taught in Python.

The third course, COMP 215: Introduction to Program Design,
is students’ first introduction into software engineering and
software design. COMP 215 introduces students to functional
programmingwith Java 8, lambdas, object-oriented programming,
testing (e.g. unit tests and other tools for debugging software),
performance optimization techniques, and additional algorithms
not covered in COMP 182. COMP 215 is taught in Java.

Additionally, it is common to take the introductory systems
course (COMP 321: Introduction to Computer Systems) in parallel
with COMP 322. One unfortunate side effect of this is that students
often come in with little or no Unix shell experience, which
presents a challengewhenworkingwith parallel compute clusters.
Students also often have little understanding of the memory
hierarchy or processing units of the hardware they use, topics
which are closely related to parallel program performance.

In addition to these courses in Computer Science, students
are likely to have taken introductory calculus and linear algebra
courses before enrolling in COMP 322.

COMP 322 itself covers a variety of parallel programming pat-
terns, including fork-join, futures, SIMD parallelism on accelera-
tors, and SPMD parallelism. COMP 322 covers several abstract and
concrete methods of synchronization, including barriers, mutexes,
phasers, locks (reentrant and read–write), Java’s synchronized
statement, and Java concurrent collections. COMP 322 focuses on
shared-memory parallel programming, but also touches on dis-
tributed memory programming using programming systems like
MPI (for message-passing), UPC (for PGAS), and Apache Spark (for
distributed functional programming) as examples. Of course, em-
phasis is placed on universal challenges in concurrency, such as
deadlock, livelock, and data races. In addition to teaching students
how to use parallel programming frameworks, COMP 322 also
covers how many of those frameworks are implemented by
describing different task scheduling policies (e.g. work-sharing,
work-stealing, work-first vs. help-first). Because the prerequisites
of the course will only have exposed students to Python and Java,
all assignments are completed in Java.

COMP322 is a 14week course. Eachweek of COMP322 includes
three fifty-minute lecture sessions, with the last 10–20 min of
each lecture dedicated to completing an in-classworksheet. Hence,
COMP 322 is a partially flipped classroom. Students are required
to complete several short quizzes each week based on videos
available online, and the majority of weeks includes an evening
2-hour lab session during which students get immediate hands-
on experience with the topics covered in class. In the Spring 2016

semester, there were a total of 13 labs. Two large exams are given,
one in the middle of the semester and one at the end. In Spring
2016, the midterm exam was given during Week 7 and the final
exam was given the week after Week 14.

For this past Spring 2016 semester, students completed five
homework assignments each of which included both a written
portion and a programming portion. In general, students are
given between 2 and 5 weeks to complete each assignment. The
programming portions for the Spring 2016 semester included:

1. Parallelizing a sorting algorithm.
2. Parallelizing a matrix multiply operation, with artificial over-

heads inserted to illustrate the concept of chunking work.
3. Parallelization of a genome alignment algorithm, with an

emphasis on task-parallel programming.
4. Parallelization ofminimum spanning tree construction, with an

emphasis on programming with the Java Threads APIs.
5. Parallelization of pi estimation on a distributed system using

OpenMPI’s Java APIs.

Homeworks 3 and 4 included intermediate checkpoints to
ensure students are making progress on the assignment. For
example, HW 3’s first checkpoint was a parallel implementation
of a genome alignment algorithm but no grade was given on real-
world performance, only on the abstract parallel metrics of their
implementation (more details on abstract metrics are provided
in Section 3). HW 3 Checkpoint 2 asked for a well-performing
parallel implementation that demonstrated reasonable speedup.
The third and final checkpoint for HW 3 asked for a parallel
implementation that was space-efficient as well, essentially
implementing wavefront-style parallelism across a grid without
storing the whole grid at once.

In COMP 322’s rubric, 40% of a student’s grade goes to
homeworks, 40% to exams (20% each), 10% to hands-on labs, and
10% to general participation (which includes attendance at labs,
active participation in class, and discussion on the course forums).

Before Spring 2016, programming assignments in COMP 322
were entirely manually graded by teaching assistants (TAs) for
correctness, performance, style, and documentation. Students
received limited feedback as they progressed through the as-
signment because TAs graded their homework only after the
submission of a final version. This process was inefficient, tedious,
error-prone, and opaque to students. Manual grading takes a sig-
nificant amount of time, which (1) increases the latency between
a homework being submitted and being returned with feedback,
resulting in students repeating the same mistakes in labs and sub-
sequent assignments, and (2) reduces the time the teaching staff
can spend on mentoring students.

1.2. COMP 322 pedagogy

COMP 322 strikes a balance between (1) providing students
with the ability to reason about parallel execution in a way that
crosses programming model boundaries, and (2) offering them
hands-on experience with practical and popular frameworks for
writing parallel programs. At a high level, COMP 322 accomplishes
this in four stages. First, students are given theoretical tools
for reasoning about the behavior and performance of their
parallel programs. Then, students gain hands-on experience with
a programming framework whose APIs closely match those
abstractions. Next, students have the chance tomove further away
from these abstractions and use standard, closer-to-hardware
programming frameworks which are more commonly used in
practice. Finally, students are given a survey of alternative models
and special-purpose frameworks as a taste of other fields in parallel
computing.



Download English Version:

https://daneshyari.com/en/article/4951689

Download Persian Version:

https://daneshyari.com/article/4951689

Daneshyari.com

https://daneshyari.com/en/article/4951689
https://daneshyari.com/article/4951689
https://daneshyari.com

