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a  b  s  t  r  a  c  t

Automated  control  of  blood  glucose  (BG)  concentration  with  a fully  automated  artificial  pancreas  will
certainly  improve  the  quality  of life  for insulin-dependent  patients.  Closed-loop  insulin  delivery  is
challenging  due  to inter-  and intra-patient  variability,  errors in  glucose  sensors  and  delays  in  insulin
absorption.  Responding  to  the  varying  activity  levels  seen  in  outpatients,  with  unpredictable  and  unre-
ported  food  intake,  and  providing  the  necessary  personalized  control  for individuals  is a challenging  task
for  existing  control  algorithms.  A  novel  approach  for controlling  glycemic  variability  using simulation-
based  learning  is  presented.  A  policy  iteration  algorithm  that  combines  reinforcement  learning  with
Gaussian  process  approximation  is  proposed.  To  account  for multiple  sources  of  uncertainty,  a  control
policy is learned  off-line  using  an Ito’s  stochastic  model  of  the  glucose-insulin  dynamics.  For  safety  and
performance,  only  relevant  data  are  sampled  through  Bayesian  active  learning.  Results  obtained  demon-
strate  that  a generic  policy  is both  safe  and  efficient  for controlling  subject-specific  variability  due to a
patient’s  lifestyle  and  its  distinctive  metabolic  response.

©  2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Insulin-Dependent Diabetes Mellitus (IDDM) is a chronic dis-
ease characterized by the inability of the pancreas to produce
sufficient amounts of insulin. A high level of BG concentration
is known to cause serious health problems, including heart dis-
ease and stroke, hypertension, retinopathy, nephropathy, and
neuropathy [1,2]. Poorly controlled diabetes mellitus is associ-
ated with multiple long-term complications that contribute to
increased morbidity and mortality. Also, abnormal glycemic vari-
ability contributes to oxidative stress, which has been linked to the
pathogenesis of diabetes [3,4]. Compensating for this deficiency in
endogenous insulin production requires 4–6 insulin injections to
be taken daily; the aim of this diabetes therapy is to maintain nor-
moglycemia – i.e., a blood glucose level between 4 and 7 mmol/L.
In defining the amount and timing of these injections, poor pre-
dictability of BG dynamics is a key issue that both patients and
doctors must deal with [5]. Manual control of BG often results
in high glycemic variability and the risk of a life-threatening
hypoglycemic event is at stake. Hypoglycemia – i.e., low blood
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glucose levels – may  lead to brain damage, coma and eventually
death.

Closing the glucose control loop with a fully automated artificial
pancreas will certainly improve the quality of life for insulin-
dependent patients. Such a device is made up of a glucose sensor, an
automated insulin infusion pump, and a feedback control strategy
or control algorithm that calculates the insulin delivery based on a
glucose signal. The major challenge for the development of a closed-
loop control system is the glycemic variability between subjects
and for the same subject over time. A reliable closed-loop system
for blood glucose regulation should be able to adapt “on the fly” to
each patient response in order to cope with daily variations in glu-
cose metabolism. Another challenge in controlling variability of BG
is sensor errors. These errors depend nonlinearly on the BG rate of
change and are subjected to a delay due to its subcutaneous nature.
Additionally, the sensor noise is non-white (non-Gaussian) and
consecutive sensor errors are highly interdependent [6]. Despite
significant advances, the available technology for continuous glu-
cose monitoring is still ineffective to deal with many issues related
to sensitivity, stability, calibration, and the physiological time lag
between BG and interstitial glucose (IG) concentration. Signifi-
cant delays in delivering insulin to the blood stream give rise
to delayed effects of control actions which increase the risk of
hypoglycaemia episodes. Hypoglycaemia has been identified as the
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primary concern for a safe implementation of the artificial pancreas
[7].

Pioneering works with the proportional-derivative (PD) and the
proportional-integral-derivative (PID) types of controllers demon-
strated the advantages of closed-loop control [8]. The resulting
control strategies, however, generally do not prove sufficiently
effective in maintaining euglycaemia after meals when the less
invasive choice of the subcutaneous route is used. PID algorithms
can be considered reactive, as they respond to observed glucose
levels and are less equipped to take advantage of announced meals
and patient-directed insulin boluses. In a recent experimental
study with a PID controller using the subcutaneous–subcutaneous
(SC–SC) route [9], the observed mean glucose levels are not sensi-
bly different to the ones corresponding to the uncontrolled glucose
dynamics. Also, the two-hour postprandial glucose levels were sig-
nificantly higher than those observed in healthy subjects under
similar conditions. Glucose variability has a highly detrimental
effect on the performance of a PID controller since even for subjects
with a strict lifestyle, gain scheduling [10] and adding a feed-
forward element based on manual entry of a meal disturbance
(time and content) are required for satisfactory blood glucose con-
trol [41]. To prevent a hypoglycemic condition, PID controllers can
be enhanced using a supervisory module that constrains insulin
delivery by limiting the maximum infusion rate or by suspending
altogether close-loop control when glucose levels are approach-
ing a lower threshold or are decreasing too rapidly. However, the
inability of PID controllers to accommodate system constraints in
the computation of control actions further limits their potential for
success with patients that have active life styles. Moreover, due to
the myopic nature of its feedback law, a PID controller is unable to
cope with delayed effects of control actions. Typically, in systems
where the effects of control actions slowly unfold over time, a PID
overreacts, which increases glycemic variability. The lag time asso-
ciated with subcutaneous (SC) insulin infusion is an obstacle for
any reactive control algorithm.

A more suitable control framework for systems with large lag
times and constraints is model predictive control (MPC) which has
been proposed as a promising architecture for insulin delivery in
the artificial pancreas [11–14]. The predictive framework is a pow-
erful tool not only to deal with time delays in the system response,
but also to evaluate the future effects of a meal and thus achiev-
ing disturbance rejection. Constraint handling and penalizing input
actions (which will avoid too aggressive control actions that may
lead to hypoglycemia) are also advantages of model-based control
methods. However, one serious drawback of model-based control
systems is that the controller performance is strongly dependent
on the accuracy of the model used to represent the glucose-insulin
dynamics. Most of the glucose-insulin models proposed in the lit-
erature are physiological compartmental models that are generally
representative of only an average subject under specific condi-
tions [15–18]. The metabolic processes underlying insulin action
involve complex interactions of hormones, which lead to signifi-
cant variation in insulin sensitivity [19]. Another disadvantage is
that to implement a MPC  requires repeatedly obtaining an on-line
solution of a mathematical program. This on-line optimization can
be avoided with a single set of a priori optimizations via multi-
parametric programming; the on-line problem is thus reduced to
the evaluation of an affine function obtained from a lookup table
[14].

More recently, new approaches combining an Iterative Learn-
ing Control (ILC) scheme with MPC  strategies have been proposed.
These hybrid methods try to benefit from the repetitive nature
of insulin therapy to improve iteratively the efficacy of insulin
doses by using run-to-run control algorithms [20,21,42,43]. In a
situation with frequent data sampling, iterative learning control
(ILC) is the alternative of choice. ILC attempts to mimic  human

learning in order to take advantage of subject-specific variation pat-
terns in the glucose-insulin dynamics. A key issue for a successful
ILC implementation is the design of a feedback control law that
can handle inter- and intra-patient glycemic variability. To address
the latter, adaptive control of blood glucose is considered a worth
exploring alternative [22,23]. Recently, an adaptive model-based
control strategy has been proposed by Oruklu et al. [24] which
can dynamically detect blood glucose variations, and on that basis
reject glycemic disturbances. The adaptability of the controller is
based on subject-specific recursive linear models developed using
data from a continuous glucose monitoring (CGM) sensor along
with a change detection algorithm. Metabolic variations in a sub-
ject’s body are addressed by online model identification. At each
step, model parameters are updated by using new glucose data,
and the future time course of BG concentration is estimated. These
parameters are then used in a model-based control algorithm for
calculating the appropriate insulin infusion rate.

In recent years, clinical evaluations of different strategies for
close-loop artificial pancreas systems have been reported. In Das-
sau et al. [25], a fully automated multi-parametric model predictive
control algorithm with insulin on-board was  experimentally tested
with encouraging results. The first wearable AP outpatient study
using a meal-informed MPC  strategy was  reported by Del Favero
et al. [26] aiming to investigate the ability to control postprandial
glucose. Despite promising results were obtained in short-term
studies for a single meal (dinner), long-term randomized stud-
ies with numerous meals are needed to prove superiority of MPC
over the commonly used bolus calculator. A bi-hormonal closed-
loop artificial pancreas was  experimentally assessed by El-Khatib
et al. [27]. Even though results demonstrate the feasibility of safe
BG control by a bi-hormonal artificial endocrine pancreas, inter-
and intra-subject variability in metabolic responses to insulin and
glucagon could hamper the effectiveness of the control algorithm.
Reactive control algorithms need to integrate learning capabilities
upon which they can promptly respond to the varying activity lev-
els seen in outpatients, with unpredictable and unreported food
intake and stress conditions, and may  also provide the neces-
sary personalized glucose control for individuals [28]. Controlling
insulin delivery in a closed-loop using reinforcement learning
algorithms revolves around obtaining robust, yet optimal control
policies that are reactive to the immediate needs of the patient.

In this work, a novel approach for controlling variability in blood
glucose concentration using simulation-based learning of a robust
control policy is presented. To account for inter-patient variability,
a policy iteration algorithm that combines reinforcement learning
with Gaussian process approximation is proposed. A generic con-
trol policy is learned off-line using an Ito’s stochastic process model
of the glucose-insulin dynamics that simulates glycemic variability
comprehensively. For safety and performance, only relevant data
are sampled through Bayesian active learning.

2. Modeling glycemic variability

Glucose-insulin dynamics exhibits significant variability from
patient to patient. Due to this uncertain behavior even the same
insulin dose with the same meal routine and the same amount of
physical exercise may  result in different blood glucose responses
to insulin injections on consecutive days. Furthermore, blood glu-
cose levels vary among different patients according to carbohydrate
contents, exercise levels, age and stress [29]. Natural inter- and
intra-patient variability needs to be addressed in developing an
optimal glucose control profile. Since the interactions between
insulin, meals, exercise and other factors and their effect on blood
glucose is an on-going phenomenon, there exists significant uncer-
tainty in the actual response of a patient to control actions.
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