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a  b  s  t  r  a  c  t

Despite  the  significant  number  of  benchmark  problems  for evolutionary  multi-objective  optimisation
algorithms,  there  are  few  in  the field  of robust  multi-objective  optimisation.  This  paper investigates  the
characteristics  of  the  existing  robust  multi-objective  test  problems  and  identifies  the  current  gaps  in the
literature.  It is  observed  that  the  majority  of the current  test problems  suffer  from  simplicity,  so  five
hindrances  are  introduced  to  resolve  this  issue:  bias  towards  non-robust  regions,  deceptive  global  non-
robust  fronts,  multiple  non-robust  fronts  (multi-modal  search  space),  non-improving  (flat)  search  spaces,
and different  shapes  for both  robust  and  non-robust  Pareto  optimal  fronts.  A set  of  12  test  functions  are
proposed  by  the  combination  of  hindrances  as  challenging  test  beds  for robust  multi-objective  algorithms.
The  paper  also  considers  the  comparison  of five  robust  multi-objective  algorithms  on  the  proposed  test
problems.  The  results  show  that  the  proposed  test  functions  are able  to provide  very  challenging  test  beds
for  effectively  comparing  robust  multi-objective  optimisation  algorithms.  Note  that  the  source  codes  of
the proposed  test  functions  are  publicly  available  at  www.alimirjalili.com/RO.html.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Real world problems include and are surrounded by a variety of
uncertainties. Such uncertainties are considered undesirable inputs
for a system. Unfortunately, undesirable inputs often have signif-
icant negative impacts on the outputs of a system. Frequently, a
system designed under laboratory conditions shows one set of out-
puts, while the same system provides very different outputs in a
real environment. Failure in many projects originates from over-
looking such uncertainties. Uncertainties can be classified into four
types [1,2]: operating conditions, inputs, outputs, and constraints.

In the field of optimisation, the process of considering uncertain-
ties when finding optimal solutions is called robust optimisation.
In robust optimisation, the ultimate goal is to obtain an optimal
design for a particular problem while achieving the least sensitiv-
ity to possible perturbations of any kind. In the field of evolutionary
optimisation, there are two main methods of robust optimisation.
We will discuss them in detail in Section 2. The general concept
is to employ a robustness measure to evaluate the robustness of
search agents over the course of iterations [3–5]. Then appropri-
ate actions are taken to guide the search agents of evolutionary
algorithm towards the robust optimum [6–8].
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In addition to uncertainties, another important characteristic of
real problems is that of multiple objectives. It is quite common in
real problems that there is more than one objective to be optimised.
Multi-objective optimisation is a popular and recent field of study
[9]. It deals with finding a set of solutions for a particular problem
which represent the best possible trade-offs between the problem’s
objectives [10]. Although there are studies in the literature for con-
verting a multi-objective problem to a single-objective problem
[11–13], it has been proven that maintaining multi-objective for-
mulation of problems allows designers to optimise problems with
different conflicting/non-conflicting objectives across a wide range
of design parameters [14].

Robust optimisation in a multi-objective search space is more
challenging than in a single-objective search space. In this case,
an optimiser should search for the best trade-offs between the
objectives and consider their sensitivity to possible perturba-
tions. Despite the importance of robust optimisation, unfortunately
there is little in the literature. Comparing the theoretical and
practical studies in the literature of single and multiple objec-
tive optimisation, there is a negligible number of publications
in robust optimisation. So, it seems robust optimisation (specifi-
cally robust multi-objective optimisation) is still in its early stages.
This paper identifies a substantial gap in the literature of robust
multi-objective optimisation, which is the extreme simplicity of the
majority of test problems. Challenging test problems are essential
tools for developing and benchmarking algorithms in the field of
evolutionary optimisation. Lack of such difficult test functions may
result in premature comparison between different algorithms. In

http://dx.doi.org/10.1016/j.asoc.2015.05.037
1568-4946/© 2015 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.asoc.2015.05.037
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2015.05.037&domain=pdf
http://www.alimirjalili.com/RO.html/
http://www.alimirjalili.com/RO.html/
http://www.alimirjalili.com/RO.html/
http://www.alimirjalili.com/RO.html/
http://www.alimirjalili.com/RO.html/
mailto:seyedali.mirjalili@griffithuni.edu.au
mailto:a.lewis@griffith.edu.au
dx.doi.org/10.1016/j.asoc.2015.05.037


334 S. Mirjalili, A. Lewis / Applied Soft Computing 35 (2015) 333–348

addition, challenging diverse test beds allow us to effectively test
the performance of algorithms from different perspectives. This
motivates our attempts to investigate the characteristics of the
current robust multi-objective test problems, introduce five hin-
drances, and propose a set of 12 diverse robust multi-objective test
problems. The contribution of the paper is the proposal of decep-
tive robust test functions, multi-modal robust test functions, and
flat robust test functions. The use of biased search spaces in the field
of robust optimisation is another contribution of the paper. Since
the paper describes the process of designing robust multi-objective
test functions in detail, it can be considered as a practical tutorial
for constructing robust test problems as well. The rest of the paper
is organised as follows.

Section 2 discusses the concepts of robust optimisation in a
multi-objective search space and current methods of handling
uncertainties using evolutionary multi-objective optimisation
algorithms. Section 3 analyses the current test problems in the
literature of robust multi-objective optimisation and identifies
their weaknesses. The hindrances are introduced and employed to
design new test problems in Section 4. In addition, Section 4 investi-
gates the characteristics of the proposed test functions theoretically
and by generating random solutions. To provide a comprehen-
sive study, five robust multi-objective algorithms are employed in
Section 5 to approximate the robust fronts of the proposed test
functions. Finally, Section 6 concludes the work and suggests some
directions for future studies.

2. Robust multi-objective optimisation

As mentioned in the preceding section, four elements of a sys-
tem that may  face uncertainty are: operating conditions, inputs,
outputs, and constraints. In the first type of uncertainties, envi-
ronmental and operating conditions vary when the system is
operating in the real environment [15]. Operating conditions are
considered as secondary inputs for a system (indirect), so these
uncertainties can also be considered secondary. Examples of this
type are temperature or pressure of water when a submarine is
navigating underwater. Another example would be the angle of
attack, temperature of air, or wind speed when an aircraft is fly-
ing. Such operating conditions sometimes become very important,
especially for systems that are critical to the safety of human oper-
ators.

The second type of uncertainties occurs in the inputs of the
systems [15,16]. Inputs refer to the primary inputs of the sys-
tems (design parameters). Examples of design parameters are the
number of coils in a tension spring, number/length of blades in a
propeller, or shape of airfoils along an aircraft’s wing. The parame-
ters may  diverge from design values, which mostly happens during
manufacturing processes. In this case, the designed parameters
vary during production and directly affect the outputs of a sys-
tem.

Outputs of a system also have the potential to face uncertain-
ties [17,18]. Although fluctuation of other components of a system
perturbs the outputs, the system itself may  produce noisy out-
puts as well. This type of uncertainty is mostly due to the usage
of meta-models, approximated models, or simulators that are used
to calculate the outputs of a system. Obviously, real problems are
modelled in computers, so the model itself has a slight discrepancy
from reality. An example of this type is the simulation’s tolerances
in Computational Fluid Dynamics (CFD) problems. The difference
between this type and others is its deterministic nature. Although
using more accurate approximated models or meta-models can
reduce the perturbations’ intensity, the system always produces
intrinsic noise. There is also another kind of system worth mention-
ing, called dynamic systems. Such systems’ outputs dynamically

change over time, which cause different outputs for similar inputs
and operating conditions [19]. In other words, time is a key input
that defines the outputs of dynamic systems.

The last type of uncertainty is applied to the constraints of a
system [1]. Designing a system is usually undertaken while consid-
ering several constraints and limitations. The constraints are not
distinct from other components of a system and may face pertur-
bations. Uncertainty in constraints does not have direct impact on
the system, yet it varies the boundaries of the system. As a result
of perturbation here, the outputs of a system may become invalid
due to the violation of constraints.

In this paper we concentrate on the uncertainty in parameter,
which is, indeed, one of the most common concerns in engineer-
ing design problems. As discussed in the introduction, this type of
uncertainty detrimentally varies the inputs of a system. In a single-
objective search space, robust optimisation can be formulated as a
minimisation problems as follows (without loss of generality):

Minimise : f (�x + �ı) (2.1)

Subject to : gi(�x + �ı) ≥ 0, i = 1, 2, . . .,  m (2.2)

hi(�x + �ı) = 0, i = 1, 2, . . .,  p (2.3)

Li ≤ xi ≤ Ui, i = 1, 2, . . ., n (2.4)

where �x is the set of parameters, �ı indicates the uncertainty vector
corresponding to each variable in �x, m is the number of inequality
constraints, p is the number of equality constraints, and [Li, Ui] are
the boundaries of ith variable.

Due to the nature of single-objective optimisation problems,
there is one robust global optimum for a certain level of uncer-
tainty. The robust optimum may change for different degrees of
uncertainty. Therefore, the ultimate goal of a robust evolutionary
algorithm is to find the optimum that has the least sensitivity to
perturbation of parameters. The robust optimum obtained can be
either the global optimum or one of the local optima in the search
space.

Robust optimisation in a multi-objective search space is differ-
ent and can be formulated as a minimisation problem as follows:

Minimise : f (�x + �ı) = {f1(�x + �ı), f2(�x + �ı), . . .,  fo(�x + �ı)} (2.5)

Subject to : gi(�x + �ı) ≥ 0, i = 1, 2, . . .,  m (2.6)

hi(�x + �ı) = 0, i = 1, 2, . . .,  p (2.7)

Li ≤ xi ≤ Ui, i = 1, 2, . . ., n (2.8)

where �x is the set of parameters, �ı indicates the uncertainty vector
corresponding to each variable in �x,  o is the number of objective
functions, m is the number of inequality constraints, p is the number
of equality constraints, and [Li, Ui] are the boundaries of ith variable.

It may  be observed in these equations that the only difference
is the number of objectives to be optimised, while all of them
receive perturbation as undesirable inputs. Due to the multiple
objectives, robust optimisation has a different meaning here. In this
case, robust optimisation refers to the process of finding a set of
solutions representing the best trade-offs between the objectives
with the lowest susceptibility to perturbations of all of the param-
eters [20]. In addition, the comparison of results cannot be done
based on inequality comparison operators anymore. A solution in
a multi-objective search space is better than another, if it shows
equal or better results in all of the objectives (and is at least bet-
ter in one objective) while considering given perturbations. This is
called robust Pareto dominance and defined as follows [20]:
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