
J. Parallel Distrib. Comput. 100 (2017) 16–29

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Optimizing checkpoint data placement with guaranteed burst buffer
endurance in large-scale hierarchical storage systems
Lipeng Wan a,∗, Qing Cao a, Feiyi Wang b, Sarp Oral b
a University of Tennessee, Knoxville, United States
b Oak Ridge National Laboratory, United States

h i g h l i g h t s

• A thorough analysis of both failure patterns and runtime characteristics of HPC systems.
• A new checkpoint placement model for optimizing large-scale hierarchical storage systems’ usage.
• A novel adaptive algorithm that can dynamically optimize the checkpoint placement.

a r t i c l e i n f o

Article history:
Received 5 May 2016
Received in revised form
25 August 2016
Accepted 2 October 2016
Available online 14 October 2016

Keywords:
Fault tolerance
Checkpoint
Hierarchical storage systems
Burst buffer
Solid-state drive

a b s t r a c t

Non-volatile devices, such as SSDs, will be an integral part of the deepening storage hierarchy on large-
scale HPC systems. These devices can be on the compute nodes as part of a distributed burst buffer service
or they can be external. Wherever they are located in the hierarchy, one critical design issue is the SSD
endurance under the write-heavy workloads, such as the checkpoint I/O for scientific applications. For
these environments, it is widely assumed that checkpoint operations can occur once every 60min and for
each checkpoint step as much as half of the system memory can be written out. Unfortunately, for large-
scale HPC applications, the burst buffer SSDs can be worn out much more quickly given the extensive
amount of data written at every checkpoint step. One possible solution is to control the amount of data
written by reducing the checkpoint frequency. However, a direct effect caused by reduced checkpoint
frequency is the increased vulnerability window of system failures and therefore potentially wasted
computation time, especially for large-scale compute jobs.

In this paper, we propose a new checkpoint placement optimization model which collaboratively
utilizes both the burst buffer and the parallel file system to store the checkpoints, with design goals
of maximizing computation efficiency while guaranteeing the SSD endurance requirements. Moreover,
we present an adaptive algorithm which can dynamically adjust the checkpoint placement based on
the system’s dynamic runtime characteristics and continuously optimize the burst buffer utilization. The
evaluation results show that by using our adaptive checkpoint placement algorithmwe can guarantee the
burst buffer endurance with at most 5% performance degradation per application and less than 3% for the
entire system.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Large-scale high performance computing (HPC) systemsusually
support running tens of scientific simulations on hundreds of
thousands of compute nodes simultaneously. Due to the scale
of both hardware and software components involved, failures
are common and a fact of life in large-scale HPC systems’ daily

∗ Corresponding author.
E-mail addresses: lwan1@vols.utk.edu (L. Wan), cao@utk.edu (Q. Cao),

fwang2@ornl.gov (F. Wang), oralhs@ornl.gov (S. Oral).

operation. Most scalable scientific applications copewith potential
failures using some form of defensive programming technique—
by periodically exporting their execution state and intermediary
results as a ‘‘checkpoint’’ to a persistent storage. In the event
of failures, they will be able to continue the execution (restart)
without repeating previous computation.

Checkpoints generated by scientific applications are written
to the parallel file systems (PFS) which are usually built using
traditional storage servers and spinning disk drivers for balanced
cost, performance, and capacity. Parallel file systems provide an
efficient data access mechanism between various computation
resources over high-performance storage area networks. However,

http://dx.doi.org/10.1016/j.jpdc.2016.10.002
0743-7315/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jpdc.2016.10.002
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2016.10.002&domain=pdf
mailto:lwan1@vols.utk.edu
mailto:cao@utk.edu
mailto:fwang2@ornl.gov
mailto:oralhs@ornl.gov
http://dx.doi.org/10.1016/j.jpdc.2016.10.002


L. Wan et al. / J. Parallel Distrib. Comput. 100 (2017) 16–29 17

given the frequency of the checkpoints and the amount of data
written at each checkpoint step, the total checkpoint size written
in an applications runtime can be daunting. Trying to absorb such
large-scale checkpoint I/O with traditional parallel file systems
can be cost-prohibitive. On the other hand, studies have shown
that PFS has been underutilized in the sense that it operates
in much lower bandwidth spectrum most of the time which is
nowhere near the peak [14]. In order to resolve the dichotomy,
the concept of ‘‘burst buffer’’ was recently proposed and has
been designed and prototyped in some large-scale HPC systems
[14,22,2,39,23]. The basic idea behind the ‘‘burst buffer’’ is that
we can build an intermediate hardware and I/O middleware layer
between compute nodes and parallel file systems to better handle
I/O workloads from scientific applications by utilizing flash or
SSD. The checkpoint data from scientific applications will be
temporarily written into the burst buffer layer first and then
drained to the underlying parallel file systems asynchronously.
Since SSDs can provide much higher read and write bandwidth
than hard disk drives, with the help of burst buffer layer,
the I/O performance of scientific applications will be improved
significantly, which also means the checkpointing can be done
faster and more CPU time can be saved for computation.

Ideally, the burst buffer was designed to absorb all I/O
workloads generated by large-scale applications running on
supercomputers. However, in reality we may have to limit the
amount of data written to the burst buffer if the endurance
requirements on SSD devices are to be considered. Specifically,
each block in an SSD must be erased before being rewritten and
only a finite number of erasures are possible before the bit error of
SSD becomes unacceptably high. Moreover, random writes could
generate more erasure operations compared to sequential writes
and lead to the increase of the so called write amplification [10]. In
this paper, we focus our study on how general HPC I/O workloads,
where a normal write amplification factor is often assumed, affect
the lifetime of a typical SSD device. However, in some scenarios,
different models of SSD devices might have different endurance
even under the same I/O workload, or the inherent random access
pattern of the I/O workloads might make the endurance issue
more severe than the general case studied here. Those special
scenarios are out of this paper’s scope, but will be studied in
our future work. As an example, let us assume designing a burst
buffer layer for a hypothetical large-scale HPC platform with
tens of thousands of compute clients. If the building blocks are
typical 256 GB SSDs and if we are targeting a relatively moderate
sized burst buffer layer (e.g. 5 PB aggregate capacity), then the
total number of SSDs required is about 20,000. According to the
datasheet [21], the newest Samsung 850 Pro SSD (256 GB) has
a warranty for maximum 150 TB write. If the burst buffer is
designed to serve 5 years, the maximum amount of data that
can be written to the entire burst buffer per day is 1600 TB.
We further assume that the write amplification factor is around
1.3 [10], then the actual allowedwrite is about 1200 TB per day. On
the other hand, some common large-scale scientific applications
often produce huge checkpoint data. For example, if half of the
compute nodes in ORNL’s Titan [18] supercomputer are used to
run the CHIMERA application [30], the size of each checkpoint
generated at each checkpoint step is almost 160 TB [29]. This
is a common case when scientific applications are run at large-
scale, since at each checkpoint step half of the data residing in the
system memory can be written to the storage as a checkpoint. If
several such scientific applications run simultaneously, the total
size of the write workloads per day will be much larger than the
SSD endurance requirements. Therefore, without constraints, the
intensive write workloads produced by large-scale long-running
scientific applications through checkpointing could degrade the
endurance of SSD devices and the reliability of the burst buffer
significantly.

Several techniques and approaches [40,13,11] have been
proposed to optimize the endurance of SSD devices under different
I/O workloads, particularly the kinds of workloads produced
by personal computers, web servers, database systems, etc.
However, none of them tackles on SSD endurance issues in HPC
environment, because the HPC I/O workloads usually consist of
extremely intensive write operations which can quickly wear out
the SSD devices even when cutting-edge endurance optimization
techniques are used. In fact, the HPC community does not have a
full understanding of how to effectively maintain sustainable cost-
to-performance and cost-to-capacity ratios for SSD devices under
such write-heavy I/O workloads. One possible solution might be
replacing the worn-out SSDs often to maintain a given capacity
level, however, this solution is not feasible or cost-effective. The
system-exclusive burst buffer can be built either by using node-
local SSDs (i.e., an SSD device on every compute node) or can be
shared (i.e., a set of pool of SSDs serving all compute nodes in a
given HPC system). In the node-local case, the number of SSDs
required grows linearlywith the number of compute nodes. For the
shared case, the required number of SSDs will grow linearly with
the total memory size to absorb and flush the output data burst.
In either case, we end up with thousands or tens of thousands
of SSDs for a large-scale HPC system. To maintain the wear-
out levels of this number of SSDs in a large-scale HPC facility
will require extensive resources (i.e., man power to monitor and
physically replace the worn-out devices on regular basis). Also,
this approach will incur additional costs of the replaced devices.
As an example, a modest size SSD can easily cost a few hundred
US dollars today and the replacing just the half of a 5000 SSD
population will amount to a few million US dollars. Moreover, this
approach requires compute node downtimes and interruptions to
replace the worn-out devices from otherwise a ‘‘healthy’’ node (in
terms of remaining components, such as CPU andmemory), which
is also an additional but hidden cost for the total cost of ownership
(TCO) of a large-scale HPC system. For all these reasons combined,
solely relying on physically replacing worn-out SSDs to maintain a
set of required capacity and endurance targets is not cost-effective
or practical.

Besides frequently replacing worn-out SSD devices, another
possible solution would be reducing the amount of data written to
the burst buffer. In [9], the authors proposed a checkpoint interval
optimization model for large-scale scientific applications which
takes the constraint of burst buffer capacity into consideration. In
suchmodel, SSD-based burst buffers of supercomputers are used to
absorb all checkpoint data of the scientific applications. Therefore,
in order to satisfy the capacity constraint, the model intends to
reduce the checkpointing frequency of some write-heavy jobs so
that the amount of data written to the burst buffer can be reduced.
However, a direct effect caused by such reduction in checkpointing
frequency is that the potential wasted computation time due to
system failures also increases significantly, especially for large
computation jobs.

In this paper, we propose a new checkpoint placement
optimization model which collaboratively utilizes both the burst
buffer and parallel file system in a large-scale storage system
to store the checkpoint data generated by scientific applications.
Specifically, our model guarantees the endurance requirements of
the SSD-based burst buffer layers without sacrificing too much
of the computational efficiency. Moreover, in order to make the
model feasible to real HPC systems, we also design an adaptive
algorithmwhich can dynamically adjust the checkpoint placement
based on the changing runtime characteristics of the HPC system
and continuously optimize the usage of the burst buffer. The
evaluation results demonstrate the effectiveness of our checkpoint
placement model and adaptive checkpoint placement algorithm.
Particularly, using our adaptive checkpoint placement algorithm



Download English Version:

https://daneshyari.com/en/article/4951708

Download Persian Version:

https://daneshyari.com/article/4951708

Daneshyari.com

https://daneshyari.com/en/article/4951708
https://daneshyari.com/article/4951708
https://daneshyari.com

