J. Parallel Distrib. Comput. 100 (2017) 103-127

journal homepage: www.elsevier.com/locate/jpdc

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

PARALLELAND
DISTRIBUTED
COMPUTING

Elastic transactions”

@ CrossMark

Pascal Felber?, Vincent Gramoli®*, Rachid Guerraoui®©

2 University of Neuchdtel, Rue Emile-Argand 11, B-114, CH-2000 Neuchdtel, Switzerland

b School of Information Technologies, Bldg J12, 1, Cleveland St, University of Sydney, NSW 2006, Sydney, Australia

€ EPFL Station 14, CH-1015 Lausanne, Switzerland

HIGHLIGHTS

e Elastic transaction is a new relaxed transactional model.

o Elastic transaction offers better performance than classic transaction when used instead.

o Elastic transaction is especially suited for search structures.

ARTICLE INFO ABSTRACT

Article history:

Received 23 December 2014
Received in revised form

27 August 2016

Accepted 7 October 2016
Available online 27 October 2016

This paper presents elastic transactions, an appealing alternative to traditional transactions, in particular
to implement search structures in shared memory multicore architectures. Upon conflict detection, an
elastic transaction might drop what it did so far within a separate transaction that immediately commits,
and resume its computation within a new transaction which might itself be elastic.

We present the elastic transaction model and an implementation of it, then we illustrate its simplicity

and performance on various concurrent data structures, namely double-ended queue, hash table, linked list,

Keywords:
Transactional memory
Concurrent data structures

and skip list. Elastic transactions outperform classical ones on various workloads, with an improvement of
35% on average. They also exhibit competitive performance compared to lock-based techniques and are
much simpler to program with than lock-free alternatives.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Transactions are an appealing synchronization paradigm for
they enable average programmers to leverage modern multicore
architectures. The power of the paradigm lies in its abstract na-
ture: there is no need to know the internals of shared object imple-
mentations, it suffices to delimit every critical sequence of shared
object accesses using transactional boundaries. The inherent diffi-
culty of synchronization is hidden from the programmer and en-
capsulated inside the transactional memory, implemented once
and for all by experts in concurrent programming.

* A preliminary extended abstract of this work has been published in the
proceedings of DISC 2009 (Felber et al., 2009) [15], the current version extends it
by generalizing the model, applying it to additional data structures, and comparing
it against existing synchronization alternatives.

* Corresponding author.

E-mail addresses: pascal.felber@unine.ch (P. Felber),
vincent.gramoli@sydney.edu.au (V. Gramoli), rachid.guerraoui@epfl.ch
(R. Guerraoui).

http://dx.doi.org/10.1016/j.jpdc.2016.10.010
0743-7315/© 2016 Elsevier Inc. All rights reserved.

Not surprisingly, and precisely because it hides synchroniza-
tion issues, the transaction abstraction may severely hamper par-
allelism. This is particularly true for search data structures where
transactions do not know a priori where to insert an element
unless they possibly explore a big part of the data structure.
Search structures implement key abstractions like queues, heaps,
key-value stores, or collections but turn out to be the contention
hot spots of applications aiming at leveraging modern multicore
machines [59]. In an attempt to minimize this contention, trans-
actions are typically chosen to synchronize search structures by
redirecting shared accesses at run-time, instead of conservatively
protecting extra memory locations ahead of time.

To illustrate the limitation of transactions, consider the bucket
hash table depicted in Fig. 1 implementing an integer set and
exporting operations search, insert, and remove. A bucket, itself
implemented with a sorted linked list as in [44], indicates where
an integer should be stored. Consider furthermore a situation
involving two concurrent transactions: the first seeks to insert an
integer m at some position whereas the second searches for an
integer n and reads m. In a strict sense, there is a read-write conflict
that may cause to block or abort one of the transactions; yet this


http://dx.doi.org/10.1016/j.jpdc.2016.10.010
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2016.10.010&domain=pdf
mailto:pascal.felber@unine.ch
mailto:vincent.gramoli@sydney.edu.au
mailto:rachid.guerraoui@epfl.ch
http://dx.doi.org/10.1016/j.jpdc.2016.10.010

104 P. Felber et al. / ]. Parallel Distrib. Comput. 100 (2017) 103-127

h1 > n > t

h2 |—> ...

Fig. 1. A bucket hash table where a transaction (insert(m)) invalidates an almost
complete transaction (search(n)) that accesses the same bucket.

is a false (search-insert) conflict. Because they are sensitive to
these kinds of conflicts, regular transactions hamper concurrency,
and this might have a significant impact on performance, should
the data structures be large and shared by many concurrent
transactions. It is important to notice here that the issue is not
related to the way transactions are used, but to the paradigm itself.
More specifically, assuming transactions in their traditional sense,
i.e., accessing shared objects through read and write primitives,
even an expert programmer has to choose between violating
consistency and hampering concurrency.

Addressing the issue above with locks is simpler. A well-known
lock-based technique to access the aforementioned sorted linked
list is to parse it starting from its first head element, by acquiring
multiple consecutive elements, before releasing the first of these.
The technique is called hand-over-hand locking [4]: it looks like a
right hand acquires the i 4 1st elements, then the left hand releases
the ith before it acquires the i + 2nd, and so on. This enables a
level of concurrency that is hard to get with regular transactions for
these are open-closed blocks that cannot overlap with one another.
Instead, a transaction keeps track of all its accesses during its entire
lifespan, hence a concurrent update on the ith element triggers a
conflict even at the point where the transaction accesses the i4+2nd
element. This lack of concurrency is problematic in numerous data
structures in which a big part of the data structure must be parsed
in order to find the targeted location.

Several transactional models were proposed to cope with sim-
ilar problems. The theory of commutativity [38] helps identifying
particular transactional operations that can be reordered without
affecting the semantics of the execution. This commutativity was
key to multiple transactional models. The consistency criterion of
multi-level serializability [69] exploits this commutativity to re-
order low level operations within operations at a higher level of
abstractions. Similar to these models, elastic transactions do not
relieve the programmer from the burden of understanding the se-
mantics of the operations, but as far as we know, no existing trans-
actional models can exploit the runtime information in search data
structure executions to decide dynamically whether operations
commute.

We propose elastic transactions, an efficient alternative to
traditional transactions for such search data structures. Just like
for a regular transaction yet differently from most transaction
models as we discuss in Section 2, the programmer must simply
delimit the blocks of code that represent elastic transactions.
Nevertheless, during its execution, an elastic transaction can be
cut (by the elastic transactional memory) into multiple regular
transactions, depending on the conflict it encountered at runtime.
Intuitively, the cut allows to automatically decide at runtime
whether operations commute.

More specifically, upon conflict detection an elastic transaction
decides whether it can cut itself; if so it commits the past accesses
as if they were part of a regular transaction before resuming into
a continuation transaction until it encounters a new conflict or
commits. A cut is prohibited if, between the times of two of its
consecutive accesses on two locations, these two locations get
updated by other transactions. Only in this rare case does the

elastic transaction abort. In other words, it is not possible for
the elastic transaction to abort if, during the interval where the
elastic transaction executes a pair of consecutive accesses on two
locations, at most one of these locations gets updated. In case the
elastic transaction does not abort, a cut could cause the elastic
transaction to execute a constant number of additional accesses
before committing the past ones. In a sense, these few extra
accesses can be viewed as a partial roll-back that is the price to
pay to avoid aborting the elastic transaction. We will see later that,
as a result, there is no need to undo any write.

At this point, one might ask why we propose a new trans-
actional model instead of using locks. The reasons are twofold:
unlike locks, elastic transactions (i) can be combined with other
transactions to permit extensibility through code composition and
(ii) enable the direct reuse of sequential code. To illustrate code
composition, consider again a hash table implementation. Consider
however that this implementation now extends the integer set ab-
straction into a dictionary abstraction aimed at exporting a move
operation, which modifies the key of a value. Given a transactional
integer set, one has simply to encapsulate a transactional remove
and a transactional insert into a single transaction to obtain an
atomic move. By contrast, using locks explicitly is known to be a
difficult task [50,55] prone to deadlocks when one process moves
from bucket £; to bucket £, while another moves from £, to £;.
Given a lock-based integer set, the programmer must know the
granularity of internal locks, like the size of lock stripes, to make
sure that the new move and existing updates on common parts are
mutually exclusive. Even so, the original implementation tuned to
provide an efficient integer set interface may provide an inefficient
extension.

Finally, lock-free implementations can neither ensure both
extensibility and concurrency. To ensure the atomicity of the
move resulting from the composition of lock-free remove and
insert, one could modify a copy of the data structure before
switching a pointer from one copy to another [27]. This, however,
prevents two concurrent updates, which modify disjoint locations,
from succeeding. One could also use a multi-word compare-and-
swap instruction [21] but this is often considered inefficient and
upcoming architectures rather favor general-purpose transactions.
A remarkable example of the lack of extensibility of efficient
lock-free algorithm is the complete redesign of a hash table
structure into a split-ordered linked list to support a lock-free
resize operation [58]. Although the resize allows hash table buckets
to move among consecutive list nodes, it does not allow nodes to
move among hash table buckets.

Elastic transactions: a primer

To give an indication of the main idea underlying elastic
transactions, consider the integer set abstraction implemented
using the linked list data structure. Each of the insert, remove,
and search operations consists of lower-level operations: some
reads and possibly some writes. Consider an execution in which
two transactions, i and j, try to insert keys 3 and 1. Each insert
transaction parses the nodes in ascending order up to the node
before which it should insert its key. Let {2} be the initial state
of the integer set and let h, n, t denote respectively the memory
locations where the head pointer, the single node (its key and next
pointer) and the tail key are stored. Let # be the following history
of operations where transaction j inserts 1 while transaction i is
parsing the data structure to insert 3 at its end. (We indicate only
operations of non-aborting transactions and omit commit events
for simplicity.)

gt =rh), rn), r(hy, rny, why, rt)’, wn).

This history is clearly not serializable [51] since there is no sequen-
tial history where r (h)' occurs before w(hy and r(n) occurs before



Download English Version:

https://daneshyari.com/en/article/4951714

Download Persian Version:

https://daneshyari.com/article/4951714

Daneshyari.com


https://daneshyari.com/en/article/4951714
https://daneshyari.com/article/4951714
https://daneshyari.com/

