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We describe a thread-modular technique for proving termination of massively parallel GPU 
kernels. The technique reduces the termination problem for these kernels to a sequential 
termination problem by abstracting the shared state, and as such allows us to leverage 
termination analysis techniques for sequential programs. An implementation in KITTeL is 
able to show termination of 94% of 604 kernels collected from various sources.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Termination analysis for sequential programs has made significant progress in the last two decades, owing to the dis-
covery of transition invariants [1], forming the basis for tools like Terminator [2], and advances in termination analysis 
techniques for term rewriting systems, as implemented by tools like AProVE [3] and KITTeL [4,5]. Researchers are now 
turning their attention to termination analysis for concurrent programs, which can be difficult due to the need for inter-
thread reasoning to establish that computational progress is not unbounded.

The main contribution of this paper is to show that, despite the general difficulty of termination analysis in the presence 
of concurrency, in the domain of graphics processing unit (GPU) programming, existing methods for establishing termination 
of sequential programs can be successfully re-used to enable termination arguments for GPU programs to be established.

GPUs are highly parallel shared-memory processors that can accelerate computationally intensive applications such as 
medical imaging [6] and computational fluid dynamics [7]. To leverage the power of a GPU, a programmer identifies a part 
of an application that exhibits parallelism. This part can then be extracted into computational kernel and offloaded to execute 
on a GPU.

As GPUs are separate devices to which kernels are offloaded, it is generally difficult to perform live debugging. Hence, 
different means are needed to identify bugs. For this reason, many researchers (including us [8,9]) have looked at proving 
safety properties of kernels, in particular ones related to data races (see [8] for a recent overview of the work in this area). 
The current paper is the first to consider termination.1

Termination is important from a theoretical perspective, e.g., because the data race detection method described in [8], 
which underpins our GPUVerify tool, is only sound for terminating kernels. However, it is even more important from a 
practical perspective. Unlike CPU applications, which may be reactive, GPU kernels are required to terminate: any data com-
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puted by a kernel is inaccessible from the CPU as long as the kernel has not terminated. Besides the data being inaccessible, 
kernels with accidental infinite loops can have a severe impact on the systems on which they run: while working on 
the experiments from [11], we accidentally introduced infinite loops on numerous occasions; this often made our systems 
unresponsive, and sometimes caused transient hardware failures and spontaneous reboots.

The termination technique we describe below is thread-modular. It operates by abstracting the state shared between the 
threads of a kernel and by considering each thread in isolation. As such, we reduce a concurrent termination problem to a 
sequential one, and are able to build on and re-use existing techniques and tools for proving termination. In fact, the sequen-
tial termination problem we end up with is somewhat easier than usual in that there is no reason to consider recursive calls 
and dynamically changing data structures; these features are generally not supported by kernel programming languages.

The contributions of this paper are as follows:

1. We leverage termination analysis techniques for sequential programs to obtain an analysis technique for GPU kernels. 
The analysis technique considers the execution of a kernel for a single arbitrary thread, using abstraction to over-
approximate the possible effects of other threads; we show that if the arbitrary thread terminates in this abstract 
setting, then the GPU kernel is also guaranteed to terminate.

2. We adapt an existing termination analysis tool—KITTeL [4,5]—and leverage the Clang/LLVM compiler to obtain a largely 
automatic source code-level termination analysis tool for CUDA [12] and OpenCL [13], the most widely used GPU pro-
gramming languages.

3. We present an evaluation of our method on a set of 604 CUDA and OpenCL kernels, of which 386 have loops. Ter-
mination analysis is naturally fully automatic for the loop-free kernels, as well as for 90% of the kernels with loops, 
backing up our claim that methods for sequential termination analysis are effective when applied in the domain of GPU 
programming. We note that the success is in large part due to the fact that termination of GPU kernels rarely depends 
on values in shared memory.

4. We consider various features of KITTeL and evaluate their effectiveness over our set of 604 kernels. The evaluation 
highlights that more research into bitvector modelling and invariant inference seems appropriate in the context of 
sequential termination analysis.

In our view, the fact that sequential termination analysis techniques can be pushed towards providing automated termi-
nation analysis for GPU kernels is an encouraging result that shows how far the termination analysis field has come.

2. Anatomy of a GPU kernel

Kernel programming languages such as CUDA [12] and OpenCL [13] are data-parallel languages that use barriers for 
synchronisation. When a thread reaches a barrier, it waits until all other threads have also reached the barrier. Once the 
barrier has been reached by all threads, execution stalls until all outstanding writes to shared memory have been committed. 
Committing the writes ensures that any write to shared memory that occurs before the barrier is visible to all threads after 
the barrier; this enables the threads to communicate.

As a running example throughout this paper we use the kernel depicted in Fig. 1. This kernel, written in the CUDA 
kernel programming language [12], implements a Kogge–Stone prefix-sum [14]. Given an array in with values n0, n1, . . . , 
ni , . . . , nm , the kernel computes an array out with values

n0, n0 + n1, . . . ,
∑

0≤k≤i

nk, . . . ,
∑

0≤k≤m

nk .

Computation of these values proceeds by having a thread block consisting of blockDim.x threads execute the prefix-sum 
algorithm. The array parameters in and out are shared between all threads, i.e., they are global arrays in CUDA terminology. 
The variable temp is local, meaning that every thread has a private copy not accessible to any other thread. The execution of 
a thread may depend on its unique identifier threadIdx.x, and threads may synchronise by calling the __syncthreads
function, which represents a barrier in CUDA.

__global__ void KoggeStone(int ∗in, int ∗out) {
out[threadIdx.x] = in[threadIdx.x];
__syncthreads();
for(unsigned offset = 1; offset < blockDim.x; offset ∗= 2) {

int temp;
if(threadIdx.x >= offset)

{temp = out[threadIdx.x − offset];}
__syncthreads();
if(threadIdx.x >= offset)

{out[threadIdx.x] = temp + out[threadIdx.x];}
__syncthreads();

}
}

Fig. 1. The Kogge–Stone prefix-sum in CUDA.
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