
JID:SCICO AID:2104 /FLA [m3G; v1.218; Prn:20/06/2017; 8:17] P.1 (1-28)

Science of Computer Programming ••• (••••) •••–•••

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Inferring linear invariants with parallelotopes

Gianluca Amato, Marco Rubino, Francesca Scozzari ∗

Università di Chieti-Pescara, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 20 May 2016
Received in revised form 27 May 2017
Accepted 31 May 2017
Available online xxxx

Keywords:
Static analysis
Abstract interpretation
Numerical abstract domain
Linear invariant
Parallelotopes

We propose a new numerical abstract domain for inferring linear invariants based on 
parallelotopes. The domain may encode any linear constraint, as the polyhedra abstract 
domain, while maintaining the efficiency of weakly relational abstract domains, such as 
intervals and octagons. We provide the full set of abstract operators, define a reduced 
product with intervals and present an experimental comparison with polyhedra and 
octagons. According to these experiments, the reduced product we propose is much more 
precise than both polyhedra and octagons in inferring interval constraints.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In the field of static analysis by abstract interpretation, much effort has been devoted in designing domains for inferring 
numerical properties such as “the value of the variable x in program point p is between 0 and 10”. In this paper we 
are mainly interested in linear invariants, which are typically expressed as linear inequalities such as 2x + 3y ≤ 42. The 
polyhedra domain by Cousot and Halbwachs [1] is able to express any such invariant, but its computational complexity 
makes it difficult to use it in practice. Many other numerical domains have been proposed to gain efficiency. One of the 
simplest one is the Cousot and Cousot’s interval domain [2], a non-relational abstract domain which can represent only 
constraints involving a single variable such as 0 ≤ x ≤ 10. Analyses using the interval domain are not very precise, since it 
cannot represent relationships between variables. Many weakly relational domains, more expressive than intervals but less 
expressive than polyhedra, have been proposed in the last years, such as octagons [3], octahedra [4], logahedra [5] and TVPI 
[6]. Weakly relational domains have proved to be quite efficient, but the invariants that can be inferred using these domains 
are seriously limited by syntactic restrictions, since expressivity is bartered for efficiency. For instance, the octagons abstract 
domain can only deal with inequalities involving two variables whose coefficients are {−1, 0, 1}, such as x − y ≤ 5, while 
TVPI can only express inequalities with two variables, such as 5x + 2y ≤ 8.

In order to handle more expressive constraints, Sankaranarayanan et al. have proposed a different approach called 
template polyhedra [7]. For each program, they fix a constraint matrix A and consider all the polyhedra of the form 
{x ∈ R

n | Ax ≤ b}, where x is the vector of program variables. The a priori choice of the matrix differentiates template 
polyhedra from other domains, where the matrix is fixed for all the programs (such as intervals or octagons) or varies freely 
(such as polyhedra). Template polyhedra generalize most weakly relational domains, with the difference that its abstract 
operators are defined by means of linear programming. Along the same direction there are the proposals of generalized 
template polyhedra [8], which combine template polyhedra and bilinear forms, and template parallelotopes [9,10], which 

* Corresponding author.
E-mail addresses: gianluca.amato@unich.it (G. Amato), marco.rubino@unich.it (M. Rubino), francesca.scozzari@unich.it (F. Scozzari).

http://dx.doi.org/10.1016/j.scico.2017.05.011
0167-6423/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.scico.2017.05.011
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:gianluca.amato@unich.it
mailto:marco.rubino@unich.it
mailto:francesca.scozzari@unich.it
http://dx.doi.org/10.1016/j.scico.2017.05.011


JID:SCICO AID:2104 /FLA [m3G; v1.218; Prn:20/06/2017; 8:17] P.2 (1-28)

2 G. Amato et al. / Science of Computer Programming ••• (••••) •••–•••

are a special case of template polyhedra. A parallelotope is a polyhedron defined by at most n linearly independent con-
straints, where n is the number of variables. Any parallelotope can be described as the set of points {x ∈ R

n | b1 ≤ Ax ≤ b2}, 
where x is the vector of program variables and the constraint matrix A is square and invertible. In the special case of 
template parallelotopes, it is possible to derive efficient abstract operators, without resorting to linear programming tools. 
In general, when using templates, the result of the analyses greatly varies depending on the choice of the matrix A, and 
finding such matrices is a hard and still open problem. We are aware of only two proposals for generating templates, one 
in Sankaranarayanan et al. original paper [7] based on a syntactic inspection of the program, and another one based on the 
statistical analysis of partial execution traces [9,10].

Here we propose a different approach which does not use templates and does not restrict the syntactic shape of con-
straints, still maintaining efficiency. We propose a domain whose abstract objects are parallelotopes, namely we only limit 
the number of constraints to n (the number of variables) and we require the constraints to be linearly independent.

While our abstract objects are parallelotopes as in [9,10], there is the fundamental difference that the constraint matrix 
is not fixed a priori but may freely change during the analysis, as for the polyhedra domain. The domain of parallelotopes 
so defined can encode any linear constraints, does not require templates and can be equipped with very efficient abstract 
operations, whose complexity is comparable to that of octagons. The key to scalability is the restriction to n linearly inde-
pendent constraints. This allows the use of algorithms adapted from linear equation solving which are simpler and more 
efficient than those used in the theory of polyhedra. For instance, minimizing a linear form on a parallelotope is cubic, since 
it essentially amounts to solving a linear equation system, while the corresponding operation on polyhedra and even on 
template polyhedra requires the use of the simplex algorithm.

Since many concrete operations are not closed with respect to parallelotopes, in most cases there is not a unique best 
parallelotope which approximates the result of the concrete operation. The careful design of suitable abstract operators 
is then a key point in the parallelotope domain. In some cases, as for the abstract union operator, we propose different 
operators, and in general we resort to appropriate heuristics in order to ensure good precision in the overall analysis.

We also propose a combination of the domain of parallelotopes and intervals, and we experimentally show that it 
compares well with respect to polyhedra and octagons. Finally, we show that, if we are interested in inferring precise interval 
constraints, then the combination of parallelotopes and intervals is far more precise than both polyhedra and octagons.

Preliminary results on the domain of parallelotopes appeared in [11]. We provide here a new comprehensive presenta-
tion of the domain, containing several novelties such as new abstract operators on parallelotopes, the reduced product of 
parallelotopes and intervals, experimental evaluations, and proofs (which are in the Appendix).

2. Notation

2.1. Linear algebra

We denote by R̄ the set of real numbers extended with +∞ and −∞. Addition and multiplication are partially extended, 
when possible, to R̄ in the obvious way. We avoid the use of indeterminate forms, with the exception of 0 times ±∞ which 
we define to be 0. We use boldface for elements v of R̄n . Any vector v ∈ R̄

n is intended as a column vector, and v T is 
the corresponding row vector. We denote by u · v the dot product of u and v and we use it indifferently for both row 
and column vectors. Given u, v ∈ R̄

n , and a relation �� ∈ {<, >, ≤, ≥, =}, we write u �� v if and only if ui �� vi for each 
i ∈ {1, . . . , n}. Given u ∈R

n and i ∈ {1, . . . , n}, we write u[i 	→ x] to denote a vector v such that vi = x and v j = u j for j �= i.
If A = (aij) is a matrix, we denote by AT its transpose. If A is invertible, A−1 denotes its inverse, and GL(n) is the group 

of n × n invertible matrices. The identity matrix in GL(n) is denoted by In and the standard basis of Rn is denoted by 
{e1, . . . , en}. Clearly, any 1 ×n-matrix can be viewed as a vector: in particular, we denote by ai∗ the row vector given by the 
i-th row of any matrix A, and by a∗i the column vector given by the i-th column of A.

More generally, if J is a set of indexes, then A J∗ is the submatrix of A composed of the rows in J and A∗ J the submatrix 
composed of the columns in J . We use A− J∗ for the submatrix of A composed of the rows of A whose indexes are not 
in J .

In the rest of the paper, when talking about the computational complexity of matrix and vector operations, we always 
assume to use a dense representation, which is the one adopted in our implementation.

2.2. Convex sets

A set C ⊆ R
n is convex when, given x, y ∈ C , for each λ ∈ [0, 1] we have that λx + (1 − λ)y ∈ C . A ray in C is a non-null 

vector v ∈ R
n such that for each x ∈ C and α ≥ 0, x + αv ∈ C . A convex set C is bounded iff it has no rays. A line in C is a 

vector v ∈ R
n such that both v and −v are rays. The lines in C form a vector space, called the linearity space of C , denote 

by lin(C). Given a vector space V , we denote by V ⊥ its orthogonal complement.
A set of vectors S = {v1, . . . , vm} is affinely dependent if there are λ1, . . . , λm ∈ R such that they are not all zero, λ1 +

· · · + λm = 0 and λ1 v1 + · · · + λm vm = 0. The affine hull of S is the set aff.hull(S) = {λ1 v1 + · · · + λm vm | λ1 + · · · + λm = 1}.
A flat F is a set of points of the form a + H where H is a vector space. Given a flat, H is uniquely determined. Therefore, 

we call the dimension of F the dimension of the corresponding vector space H . By convention, the dimension of the empty 
set is −1. The dimension of a set S is the dimension of the smallest flat containing S , and it is denoted by dim(S).



Download English Version:

https://daneshyari.com/en/article/4951775

Download Persian Version:

https://daneshyari.com/article/4951775

Daneshyari.com

https://daneshyari.com/en/article/4951775
https://daneshyari.com/article/4951775
https://daneshyari.com

