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Given a specification R , it is common for a candidate program P to be doing more than 
R requires; this is not necessarily bad, and is often unavoidable, due to programming 
language constraints or to otherwise sensible design decisions. In this paper, we introduce 
a relational operator that captures, for a given specification R and candidate program P , 
the functionality delivered by P that is relevant to R . This operator, which we call the 
projection of P over R (for reasons we explain), has a number of interesting properties, 
which we explore in this paper.

© 2017 Elsevier B.V. All rights reserved.

1. Projecting programs on specifications

Given a specification R and a program P that is written to satisfy R , we refer to P as a candidate program for spec-
ification R , and we refer to R as the target specification of program P , regardless of whether P does or does not satisfy 
specification R . Given a specification R and a candidate program P , the program P could well be falling short of some of the 
requirements of R , while at the same time exceeding (i.e. doing more than needed) on some other requirements. There is 
no shortage of reasons why a program may fall short of the requirements mandated by the specification, but there are also 
ample reasons why a program may do more than required: these include cases where excess functionality is a byproduct 
of normal design decisions, cases where it stems from programming language constructs, and more generally the need to 
bridge the gap between a potentially non-deterministic specification and a deterministic program. Consider for example the 
following relational specification on space S defined by integer variables x and y:

R = {(〈x, y〉, 〈x′, y′〉)|x′ = x + y},
and consider the following program on the same space:

while (y!=0) {x:=x+1; y:=y-1}.
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For non-negative values of y this program computes the sum of x and y in x while placing 0 in y; for negative values of y, 
it fails to terminate. Hence its function can be written as:

P = {(〈x, y〉, 〈x′, y′〉)|y ≥ 0 ∧ x′ = x + y ∧ y′ = 0}.
This program does not do everything that specification R requires, since it fails to compute the sum of x and y into x for 
negative values of y; on the other hand, it puts 0 in y even though the specification does not ask for it (but this is a side 
effect of the algorithm we have chosen to satisfy the specification). Hence looking at specification R and program P , we 
would like to think that the functionality of P that is relevant to (mandated by) R is captured by the following relation:

π = {(〈x, y〉, 〈x′, y′〉)|y ≥ 0 ∧ x′ = x + y}.
Whatever else P does (e.g. it sets y to 0) is not relevant to specification R; on the other hand, whatever else the specification 
mandates (computing the sum of x and y into x for negative values of y), program P is not delivering. In other words, 
relation π fails to capture the condition y′ = 0 because that is not mandated by the specification, and it fails to capture the 
condition the case y < 0 because that is not delivered by the candidate program P .

In this paper, we introduce a relational operator that captures, for a given specification R and program P , the functional-
ity delivered by P that is relevant to (i.e. mandated by) R; we refer to this operator as the projection of P over R , for reasons 
that we elucidate in our subsequent discussions. We define this operator in section 4, and we discuss its properties and 
implications in section 5. The concept of projection of a program on a specification comes about as a byproduct of the defi-
nition of relative correctness, i.e. the property of a program to be more-correct than another with respect to a specification. 
Relative correctness, due to [3], is discussed in section 3. In section 2 we introduce the mathematical background that we 
use throughout this paper. In section 6 we briefly discuss related work; because no other authors we know of have written 
about projections, the closest work to ours pertains to relative correctness. Finally, in section 7 we summarize and assess 
our work, and we discuss possible future directions of research.

2. Mathematical background

2.1. Relational notations

In this section, we introduce some elements of relational mathematics that we use in the remainder of the paper to 
carry out our discussions. We assume the reader familiar with relational algebra, and we generally adhere to the definitions 
of [2,19]. Dealing with programs, we represent sets using a programming-like notation, by introducing variable names and 
associated data types (sets of values). For example, if we represent set S by the variable declarations

x : X; y : Y ; z : Z ,

then S is the Cartesian product X × Y × Z . Elements of S are denoted in lower case s, and are triplets of elements of X , Y , 
and Z . Given an element s of S , we represent its X-component by x(s), its Y -component by y(s), and its Z -component by 
z(s). When no risk of ambiguity exists, we may write x to represent x(s), and x′ to represent x(s′).

A relation on S is a subset of the Cartesian product S × S; given a pair (s, s′) in R , we say that s′ is an image of s by R . 
Special relations on S include the universal relation L = S × S , the identity relation I = {(s, s′)|s′ = s}, and the empty relation 
φ = {}. Operations on relations (say, R and R ′) include the set-theoretic operations of union (R ∪ R ′), intersection (R ∩ R ′), 
difference (R \ R ′) and complement (R). They also include the relational product, denoted by R ◦ R ′ , or (R R ′ , for short) and 
defined by:

R R ′ = {(s, s′)|∃s′′ : (s, s′′) ∈ R ∧ (s′′, s′) ∈ R ′}.
The power of relation R is denoted by Rn , for a natural number n, and defined by R0 = I , and for n > 0, Rn = R ◦ Rn−1. 
The reflexive transitive closure of relation R is denoted by R∗ and defined by R∗ = {(s, s′)|∃n ≥ 0 : (s, s′) ∈ Rn}. The converse of 
relation R is the relation denoted by ̂R and defined by

̂R = {(s, s′)|(s′, s) ∈ R}.
Finally, the domain of a relation R is defined as the set dom(R) = {s|∃s′ : (s, s′) ∈ R}, and the range of relation R is defined 
as the domain of ̂R . Operator precedence is adopted as follows: unary operators apply first, followed by product, then 
intersection, then union.

A relation R is said to be reflexive if and only if I ⊆ R , symmetric if and only if R = ̂R , antisymmetric if and only if 
R ∩̂R ⊆ I , asymmetric if and only if R ∩̂R = φ, and transitive if and only if R R ⊆ R . A relation is said to be a partial ordering
if and only if it is reflexive, antisymmetric, and transitive. Also, a relation R is said to be total if and only if I ⊆ R̂R , and 
a relation R is said to be deterministic (or: a function) if and only if ̂R R ⊆ I . In this paper we use a property to the effect 
that two functions f and f ′ are identical if and only if f ⊆ f ′ and f ′L ⊆ f L. A relation R is said to be a vector if and only 
if RL = R; a vector on space S is a relation of the form R = A × S , for some subset A of S; we use vectors to represent 
subsets of S; in particular, we use the product RL as a relational representation of the domain of R .
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