
Science of Computer Programming 133 (2017) 20–50

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Checking global usage of resources handled with local 
policies ✩

Chiara Bodei ∗, Viet Dung Dinh, Gian-Luigi Ferrari

Dipartimento di Informatica, Università di Pisa, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 23 January 2014
Received in revised form 8 April 2016
Accepted 25 June 2016
Available online 4 July 2016

Keywords:
Network resources
Process calculi
Publish-subscribe systems
Formal methods
Control flow analysis

We present a methodology to reason about resource usage (acquisition, release, revision, 
and so on) and, in particular, to predict bad usage of resources. Keeping in mind 
the interplay between local and global information that occur in application-resource 
interactions, we model resources as entities with local policies and we study global 
properties that govern overall interactions. Formally, our model is an extension of 
π-calculus with primitives to manage resources. To predict possible bad usage of resources, 
we develop a Control Flow Analysis that computes a static over-approximation of process 
behaviour.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

We live in a world where mobility and distribution are part of the standard everyday (digital) devices, resources seem 
unlimited and always available. Scalable and elastic do not mean exactly this. Sooner or later people experiment that the 
available resources are not sufficient or that their existence can arise between their service requests and their satisfaction. 
One can add a 4 GB folder on her/his private data repository (e.g. Dropbox) and realises that the synchronisation with the 
Dropbox servers takes too long, especially for big amounts of data. The suggested solution is therefore to upload less big 
folders at a time, because the upload time is lower than the download one. Another one, let us say in Europe, wants to 
download some free software and suffers from the very slow downloading until realising that the chosen web-site is in USA 
and at that time most of the people have just woken up and began to surf on the web.

When designing a web-based distributed application the first focus is on the way of rendering the required functionalities 
into suitable tasks. This phase often abstracts away from the other side of the coin, i.e. the operational way of formalising 
the tasks and therefore of managing the assigned computational resources. Resource awareness, instead, should be part of 
the game from the very beginning, without being simply delegated to low-level supports. Standard programming metaphors 
consider resources as entities geographically distributed (typically available over the Internet) and with their own states, 
costs and access mechanisms. Furthermore, resources are not created nor destroyed by applications, but directly acquired 
on the fly when needed from suitable resource rental services, without investing in new infrastructures. Clearly, resource 
acquisition is subject to availability and requires the agreement between client requirements and service guarantees (Service 
Level Agreement – SLA).

✩ Research supported by the European FET Project “ASCENS”, by the Italian MIUR PRIN project “Security Horizons” and by project PRA_2016_64 “Through 
the fog”, funded by the University of Pisa.

* Corresponding author.
E-mail addresses: chiara@di.unipi.it (C. Bodei), dinh@di.unipi.it (V.D. Dinh), giangi@di.unipi.it (G.L. Ferrari).

http://dx.doi.org/10.1016/j.scico.2016.06.005
0167-6423/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.scico.2016.06.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:chiara@di.unipi.it
mailto:dinh@di.unipi.it
mailto:giangi@di.unipi.it
http://dx.doi.org/10.1016/j.scico.2016.06.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2016.06.005&domain=pdf


C. Bodei et al. / Science of Computer Programming 133 (2017) 20–50 21

The dynamic acquisition of resources increases the complexity of software since software capabilities strictly depends 
on resource availability. Ubiquitous computing [1] and Cloud computing [26,73,4] provide illustrative examples of applications 
where resources awareness is an essential concern. A further step towards ubiquitous computing is when software pervades 
the objects of our everyday life, e.g. webTV, cars, smartphones, ebook readers, etc. Often, these heterogeneous entities have 
a limited computational power, but are capable of connecting to the Internet, coordinating and interacting each other, in 
the so-called “plug&play” fashion. The real objects, as well as others of virtual nature (programs, services, etc.), which are 
connected in this way, form the Internet of Things (IoT) [5]. Similarly, cloud systems offer through the network a hardware 
and software infrastructure on which end-users can run their programs on-demand. In addition, a rich variety of dynamic 
resources, such as networks, servers, storage systems, applications and services are made available. The key point is that 
resources are “virtualised” so that they appear to their users as fully dedicated to them, and potentially unlimited.

In our programming model processes and resources are distinguished entities. Resources are computational entities with 
their own life cycle. They can range from computational infrastructures, storage systems and data services to special-purpose 
devices. Processes are instead thin entities that can dynamically acquire the required resources when available, but that 
cannot create any resource. This programming model abstracts some of the features of the systems discussed above. Indeed, 
our challenge consists in the metaphor of designing applications on top of heterogeneous sets of resources, by ensuring 
interoperability among them and providing transparency with respect to the actual resource implementation. As an example, 
let us consider a cloud system offering computing resources. The available resources are the CPU units of a given power 
and processes can only acquire the CPU time, when available, to run some specialised code. Similar considerations apply 
to storage services, where client processes can only acquire slots of the available storage. In our programming model, the 
deployed resources can be dynamically reconfigured to deal with resource upgrade, resource unavailability, security intrusion 
and failures. However, the reconfiguration steps that update the structure of the accessible resources are not under the 
control of client processes. Therefore, clients establish SLAs for having the necessary guarantees on the availability of the 
required resources.

This paper introduces the formal basis of our programming model. Specifically, we introduce the G-Local π -calculus, 
a process calculus with explicit primitives for the distributed ownership of resources, which can be either virtual or physical. 
In our calculus, resources are not statically granted to processes, but they are dynamically acquired on the fly, when required. 
We start from the π -calculus [62] and we extend it with primitives to represent resources and with the operations for 
acquiring and releasing resources on demand. Central to our approach is the identification of an abstract notion of resource. 
In our model, resources are stateful entities available in an active and dynamic environment, and processes continuously 
interact with them. A resource is described through the declaration of its interaction endpoint, its local state and its global
properties. Global properties establish and enforce the SLA to be satisfied by any interaction the resource engages with its 
client processes. We do not address here the precise nature of these properties. The definition of the global interaction 
properties may involve several kinds of trade-offs. We assume that the global interaction properties can be expressed by 
means of a suitable resource-aware logic in the style of [11], or contract-based logic as in [30,13]. The interplay between 
the local operations over the state and the global SLA enforcement that occur in the process-resource interactions motivates 
the adjective G-Local given to our extension of the π -calculus.

Since we start from π -calculus, name-passing is the basic communication mechanism among processes. Beyond ex-
changing channel names, processes can pass resource identifiers as well. Resource acquisition is instead based on a different 
abstraction. To acquire the ownership of a certain resource, a process issues a suitable request. Such request is routed in 
the network environment to the resource. The resource is granted only if it is available. Conceptually, the process-resource 
interaction paradigm adheres to the publish-subscribe model: resources act as publishers, while processes act as subscribers. 
Actually, the publish-subscribe paradigm not only is a natural choice to represent distributed resources, but it also empha-
sises the fact that resources have to be published by external parties and therefore have to be available to everyone through 
appropriate requests. Notice that processes issue their requests without being aware of resource availability. When they have 
completed their task on the resource, acquired in an exclusive but limited usage, they release it and make it available for 
new requests. Furthermore, whenever the usage of the acquired resource does not respect the global SLA policy at hand, the 
release operation is forced. We argue that this approach relaxes the inter-dependencies among computational components 
thus achieving a high degree of loose coupling among processes and resources. Under this regard, our model resembles 
coordination models based on the notion of tuple space [40] and seems to be particularly suitable to manage distributed 
systems in which the set of published resources is subject to frequent changes and dynamic reconfigurations.

In summary, our approach combines the basic features of π -calculus with the distributed acquisition of stateful resources 
equipped with global SLA policies. This is our first contribution and also constitutes an original feature of the proposal since 
it covers both aspects of process-resource interactions.

A second contribution consists in the development of a Control Flow Analysis (CFA) for our calculus. The analysis computes 
a safe approximation of resource usage. Hence, it can be used to statically check whether or not the global properties of 
resource usage are respected by process interactions. In particular, it helps detecting possible bad usage of resources, due 
to policy violations. The analysis identifies the sensible points in the code that need dynamic checks in order to avoid 
policy violations. Our analysis also manages iterative behaviour of processes acting over resources. The analysis constructs 
a finite-state model that approximates the executable behaviour of processes capable of performing unbounded iterative 
actions over shared resources.



Download English Version:

https://daneshyari.com/en/article/4951813

Download Persian Version:

https://daneshyari.com/article/4951813

Daneshyari.com

https://daneshyari.com/en/article/4951813
https://daneshyari.com/article/4951813
https://daneshyari.com

