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a  b  s  t  r  a  c  t

The  problem  of  optimal  non-hierarchical  clustering  is  addressed.  A  new algorithm  combining  differential
evolution  and  k-means  is  proposed  and  tested  on  eight  well-known  real-world  data  sets.  Two  criteria
(clustering  validity  indexes),  namely  TRW  and VCR,  were  used  in the  optimization  of  classification.  The
classification  of  objects  to be optimized  is encoded  by the  cluster  centers  in  differential  evolution (DE)
algorithm.  It  induced  the  problem  of rearrangement  of  centers  in  the  population  to  ensure an  efficient
search  via  application  of  evolutionary  operators.  A new  efficient  heuristic  for this  rearrangement  was  also
proposed.  The  plain  DE  variants  with  and  without  the  rearrangement  were  compared  with  corresponding
hybrid  k-means  variants.  The  experimental  results  showed  that  hybrid  variants  with  k-means  algorithm
are  essentially  more  efficient  than  the  non-hybrid  ones.  Compared  to a standard  k-means  algorithm  with
restart,  the  new  hybrid  algorithm  was  found  more  reliable  and  more  efficient,  especially  in difficult  tasks.
The results  for TRW  and  VCR criterion  were  compared.  Both  criteria  provided  the  same  optimal  partitions
and no  significant  differences  were  found  in  efficiency  of  the algorithms  using  these  criteria.

© 2015  Published  by  Elsevier  B.V.

1. Introduction
Q3

Cluster analysis (or clustering) is an important exploratory
technique used for splitting a collection of objects into relatively
homogeneous groups (called clusters) based on object similarities.
Clustering is completely data driven process denoted as unsuper-
vised machine learning.

Clustering problem can be defined formally as follows. Let O  be a
set of n objects to be grouped. The aim of the clustering algorithm is
to find such a partition C = {C1, C2, . . .,  Ck} fulfilling the conditions:

1 Cl /= ∅ forall l = 1, 2, . . .,  k
2 Cl ∩ Cm = ∅all l /= m
3 ∪l=1

kCl = O
4 objects belonging to the same cluster are as similar to each other

as possible, while the objects belonging to different clusters are
as dissimilar as possible.
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Each partition fulfilling conditions 1–3 is called feasible partition.
The count of different feasible partitions is given by Stirling number
of the second kind S(n, k)

S(n, k) = 1
k!
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(
k

l

)
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(1)

Let us suppose that each object of O  is characterized by p real-
valued attributes. Data matrix Z of size n × p is composed of n row
vectors zi, where each element zij represents the j-th real-valued
attribute of the i-th object. Then each feasible partition can be eval-
uated by a function (criterion) that quantifies the goodness of the
partition based on the similarity or dissimilarity of the objects. The
function reflects the vague condition 4. The solution of clustering
problem is to find such a partition that optimizes the function.

It is known that the clustering problem is hard, Brucker [1] has
shown that the clustering problem is NP-hard when k > 3. The count
of feasible partitions is very large, e.g. for popular test problems like
Iris is S(150, 3) ≈ 6 ×1070 and for Glass even S(214, 6) ≈ 4 ×10165.
This implies that exhaustive search is not applicable in the solu-
tion of clustering problem. Thus, heuristics have to be used. There
are two main approaches how to solve the clustering problem,
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hierarchical and non-hierarchical. The non-hierarchical (partition)
clustering algorithms try to decompose the data sets directly into
a set of disjoint clusters via optimizing a chosen function. Such
functions are also called the clustering validity indices or criteria.

Because of difficulty of the clustering problem, the historically
first clustering algorithms inclusive of the most popular k-means
algorithm are iterative. Their weakness consists in the fact that the
solution found by them is often suboptimal only. The iterative clus-
tering algorithms are described in many textbooks, for an overview
see, e.g. [2]. Several important iterative clustering algorithms are
experimentally compared in Hamerly and Elkan [3].

The goal of our paper is to propose a novel hybrid algorithm
combining differential evolution and k-means algorithm and apply
it to non-hierarchical clustering. The improved hybrid algorithm
is derived from our results [4,5], where a preliminary versions of
hybridization were introduced and proved to be more efficient than
non-hybrid differential evolution.

The rest of the paper is organized as follows. Applications of evo-
lutionary algorithms to clustering are surveyed briefly in Section 2.
Two criteria (clustering validity indices) used in experimental com-
parison are defined in Section 3. The basic frame of DE algorithm
is described in Section 4 and encoding of partition for DE in Sec-
tion 5. New heuristic rearrangement of cluster centers is proposed
in Section 6. Section 7 presents the proposed hybrid algorithm in
detail. The organization of experiments and experimental setting
are described in Sections 8–10. The experimental results are shown
and discussed in Section 11 and the paper is closed by concluding
remarks in Section 12.

2. A brief literature overview on evolutionary algorithms in
clustering

Application of evolutionary algorithms or swarm intelligence to
optimal clustering seems to be a natural choice how to solve this
algorithmically difficult clustering problem. The paper by Pater-
lini and Krink [6] can be considered a pioneering work in this
field. They compared the performance of floating point encoded
genetic algorithm (GA), differential evolution (DE), and particle
swarm optimization (PSO). The experimental results showed that
DE outperformed the other algorithms in the comparison, which
is in accordance with [7], where DE was also the best performing
in experimental comparison with GA and PSO on a set of standard
benchmark optimization problems.

Das et al. [8] applied an improved DE to clustering including
the search of optimal number of clusters. DE was also used in
fuzzy-clustering algorithm [9]. Appropriate setting of DE control
parameters for clustering problems (especially parameter con-
trolling the exponential crossover) was also studied in [10]. A
comprehensive survey of evolutionary algorithms for clustering up
to 2009 was published by Hruschka et al. [11].

Hybridization of DE by using k-means algorithm for a local
search appeared in several papers. Very similar approach was  sug-
gested independently in [12] and [4]. A hybrid DE variant with a
special rearrangement of the rank of cluster centers after comple-
ting each generation [5] proved to be substantially more efficient
than standard DE. The efficiency of k-means hybridization in evo-
lutionary algorithms was studied by Naldi et al. [13] and found
to be beneficial. Karaboga and Ozturk [14] used Artificial Bee
Colony (ABC) algorithm in classification of objects and compared
it with PSO and other classification algorithms on 13 test prob-
lems. They found that ABC can be successfully applied to clustering
for the purpose of classification. Abraham et al. [15] provided a
very comprehensive survey on swarm intelligence algorithms for
data clustering. A survey of evolutionary and swarm intelligence
algorithms for clustering can be also found in [16] and [17].

3. Criteria of optimal partitioning

There are several optimizing criteria convenient for comparing
the degree of optimality over all possible partitions, see e.g. [2,18].
In order to preserve the possibility of comparison with the results
presented in literature [6], two  criteria are used in experimental
tests of the proposed algorithm.

Trace within criterion (hereafter TRW), proposed by Friedman
and Rubin [19], is based on minimizing the trace of pooled-within
groups scatter matrix ( W ) defined as

W =
k∑

l=1

W l . (2)

W l is the variance matrix of attributes for the objects belonging to
cluster Cl given by

W l =
nl∑

j=1

(z(l)
j

− z(l))(z(l)
j

− z(l))
T
, (3)

where z(l)
j

is the vector of attributes for the j-th object of cluster Cl,

z(l) =
(∑nl

j=1z(l)
j

)
/nl the vector of means (centroids) for cluster Cl,

and nl = |Cl|. Thus, TRW is simply

TRW = tr(W ). (4)

The between groups scatter matrix can be expressed analo-
gously in the form

B =
k∑

l=1

nl(z
(l) − z)(z(l) − z)

T
, (5)

z =
(∑n

i=1zi)
)

/n being the vector of means for all objects, n =∑k
l=1nl . It can be easily proved that the total scatter matrix T ,

defined as T =
∑n

i=1(zi − z)(zi − z)T , meets the equality T = W +
B.

Variance ratio criterion (VRC) is based on maximizing the fol-
lowing ratio

VRC = tr(B)/(k − 1)
tr(W )/(n − k)

. (6)

For given k > 1, VCR criterion can be expressed as
VCR = c1/TRW − c2, where c1 = (n − k) × tr( T)/(k  − 1) and
c2 = (n − k)/(k − 1). It shows that the global optimum point is
equivalent for both criteria. From this point of view, there is no
reason to use the VCR criterion if k is given. However, when the
heuristic search of the global optimum point is used, the shape of
one function (landscape) may  be more convenient than the other.

4. Differential evolution algorithm

The differential evolution (DE), introduced by Storn and
Price [20], has become one of the most frequently evolutionary
algorithms used for solving the continuous global optimization
problems [21]. When considering the minimization problem, for
a real function f (x) → R, where x is a continuous variable (vec-
tor of length d) with the domain D ⊂ R

d, the global minimum
point x* satisfying condition f( x*) ≤ f( x) for ∀ x ∈ D is to be found.
The domain D is defined by specifying boundary constraints, D =∏d

j=1[aj, bj], aj < bj, j = 1, 2, . . .,  d.
The initial population of N points is generated at random, uni-

formly distributed in D, each point in D is considered as a candidate
of the solution and then the population is evolving generation by
generation until the stopping condition is met. Next generation Q
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