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Much progress has been made recently on fully automated verification of higher-order 
functional programs, based on refinement types and higher-order model checking. Most 
of those verification techniques are, however, based on first-order refinement types, hence 
unable to verify certain properties of functions (such as the equality of two recursive 
functions and the monotonicity of a function, which we call relational properties). To 
relax this limitation, we introduce a restricted form of higher-order refinement types 
where refinement predicates can refer to functions, and formalize a systematic program 
transformation to reduce type checking/inference for higher-order refinement types to that 
for first-order refinement types, so that the latter can be automatically solved by using an 
existing software model checker. We also prove the soundness of the transformation, and 
report on implementation and experiments.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

There has been much progress in automated verification techniques for higher-order functional programs [12,17,16,9,11,
19,13].1 Most of those techniques abstract programs by using first-order predicates on base values (such as integers), due to 
the limitation of underlying theorem provers and predicate discovery procedures. For example, consider the program:

let rec sum n = if n<0 then 0 else n+sum(n-1).

Using the existing techniques [12,17,16,9], one can verify that sum has the first-order refinement type: (n : int) →
{m : int | m ≥ n}, which means that sum n returns a value no less than n. Here, {m : int | P (m)} is the (refinement) type of 
integers m that satisfy P (m).

Due to the restriction to the first-order predicates, however, it is difficult to reason about what we call relational prop-
erties, such as the relationship between two functions, and the relationship between two invocations of a function. For 
example, consider another version of the sum function:

✩ This article is a revised and extended version of the paper that appeared in Proceedings of PEPM 2015 under the title “Verifying Relational Properties 
of Functional Programs by First-Order Refinement”. We have added detailed definitions, proofs, and explanations.
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1 In the present paper, by automated verification, we mean (almost) fully automated one, where a tool can automatically verify a given program satisfies 
a given specification (expressed either in the form of assertions or refinement type declarations), without requiring invariant annotations (such as pre/post 
conditions for each function). It should be contrasted with refinement type checkers [20,2] where a user must declare refinement types for all recursive 
functions including auxiliary functions. Some of the automated verification techniques above require a hint [19], however.
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let rec sumacc n m = if n<0 then m else sumacc (n-1) (m+n)
and sum2 n = sumacc n 0

Suppose we wish to check that sum2(n) equals sum(n) for every integer n. With general refinement types [6], that would 
amount to checking that sumacc and sum2 have the following types2:

sumacc : (n : int) → (m : int) → {r : int | r = m + sum(n)}
sum2 : (n : int) → {r : int | r = sum(n)}

The type of sum2 means that sum2 takes an integer as an argument n and returns an integer r that equals the value of 
sum(n). With the first-order refinement types, however, sum cannot be used in predicates, so the only way to prove that
sum2(n) equals sum(n) would be to verify precise input/output behaviors of the functions:

sum,sum2 : (n : int) → {r : int | (n ≥ 0 ∧ r = n(n + 1)/2) ∨ (n < 0 ∧ r = 0)}.
Since this involves non-linear and disjunctive predicates, automated verification (which involves automated synthesis of the 
predicates above) is difficult. In fact, most of the recent automated verification tools do not deal with non-linear arithmetic.

Actually, with the first-order refinement types, there is a difficulty even with the “trivial” property that sum satisfies 
sum x = x + sum (x − 1) for every x ≥ 0. This is almost the definition of the sum function, and it can be expressed and 
verified using the general refinement type:

sum : { f : int → int | ∀x. x ≥ 0 ⇒ f (x) = x + f (x − 1)}.
Yet, with the restriction to first-order refinement types, one would need to infer the precise input/output behavior of sum
(i.e., that sum(x) returns x(x + 1)/2).3

We face even more difficulties when dealing with higher-order functions. Consider the following program.

let nil i = None in
let tl xs = fun i-> xs(i+1) in
let cons x xs = fun i -> if i=0 then Some(x) else xs(i-1) in
let rec append xs ys =

match xs(0) with None -> ys
| Some(x) -> let xs’ = tl xs in cons x (append xs’ ys)

Here, a list is encoded as a function that maps each index to the corresponding element (or None if the index is out 
of bounds) [13], and the append function is defined. Suppose that we wish to verify that append xs nil = xs. With 
general refinement types, the property would be expressed by:

append : (x : int → int option) → {y : int → int option | y(0) = None} → {r : int → int option | r = x}
(where r = x means the extensional equality of functions r and x) but one cannot directly express and verify the same 
property using first-order refinement types.

To overcome the problems above, we allow4 programmers to specify (a restricted form of) general refinement types in 
source programs. For example, they can declare

sum2 : (n : int) → {r : int | r = sum(n)}
append : (x : int → int option) → ({y : int → int option | y(0) = None}→

{r : int → int option | ∀i.r(i) = x(i)}.
To take advantage of the recent advance of verification techniques based on first-order refinement types, however, we em-
ploy automated program transformation, so that the resulting program can be verified by using only first-order refinement 
types. The key idea of the transformation is to apply a kind of tupling transformation [3] to capture the relationship be-
tween two (or more) function calls at the level of first-order refinement. For example, for the sum program above, one can 
apply the standard tupling transformation (to combine two functions sum and sumacc into one) and obtain:

let rec sum_sumacc (n, m) =
if n<0 then (0,m)

else let (r1,r2)=sum_sumacc (n-1, m+n) in (r1+n, r2)

2 As defined later, a formula t1 = t2 in a refinement type means that if both t1 and t2 evaluate to (base) values, then the values are equivalent.
3 Another way would be to use uninterpreted function symbols, but for that purpose, one would first need to check that sum is total.
4 But programmers are not obliged to specify types for all functions. In fact, for the example of sum2, no declaration is required for the function sum.
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