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a  b  s  t  r  a  c  t

Although  harmony  search  (HS)  algorithm  has  shown  many  advantages  in  solving  global  optimization
problems,  its  parameters  need  to be set by users  according  to  experience  and  problem  characteristics.
This  causes  great  difficulties  for  novice  users.  In order to overcome  this  difficulty,  a  self-adaptive  multi-
objective  harmony  search  (SAMOHS)  algorithm  based  on  harmony  memory  variance  is  proposed  in this
paper.  In  the  SAMOHS  algorithm,  a modified  self-adaptive  bandwidth  is  employed,  moreover,  the self-
adaptive  parameter  setting  based  on  variation  of harmony  memory  variance  is proposed  for  harmony
memory  considering  rate  (HMCR)  and  pitch  adjusting  rate  (PAR).  To  solve  multi-objective  optimiza-
tion  problems  (MOPs),  the  proposed  SAMOHS  uses  non-dominated  sorting  and  truncating  procedure  to
update  harmony  memory  (HM).  To  demonstrate  the  effectiveness  of  the SAMOHS,  it  is tested  with many
benchmark  problems  and  applied  to solve  a practical  engineering  optimization  problem.  The  experimen-
tal  results  show  that the SAMOHS  is  competitive  in  convergence  performance  and  diversity  performance,
compared  with  other  multi-objective  evolutionary  algorithms  (MOEAs).  In the  experiment,  the  impact
of harmony  memory  size  (HMS)  on the performance  of SAMOHS  is also  analyzed.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The majority of real-world optimization problems consist of
multiple objectives which usually conflict with each other, the so
called multi-objective optimization problems (MOPs). MOPs gen-
erate a set of optimal solutions instead of a single solution, largely
known as Pareto optimal set [1]. The efficiency to find multiple solu-
tions of most classical optimization algorithms is low since these
optimization algorithms usually achieve only one Pareto optimal
solution in one run, therefore, these algorithms have to be run many
times to acquire the Pareto optimal set.

In the last few decades, evolutionary algorithms have attracted
great attention among researchers to solve MOPs, many multi-
objective evolutionary algorithms (MOEAs) have been developed,
such as NSGA-II [1], PESA-II [2], SPEA2 [3] and M-PAES [4]. The rea-
son for the fast development of MOEAs is that these algorithms
are able to find multiple Pareto optimal solutions in just one single
execution. Harmony search (HS) algorithm, inspired by the music
improvisation process, is a new kind of meta-heuristic algorithm
[5]. The HS algorithm has been applied to solve a wide variety of
optimization problems [6–9] as it has several advantages including:

∗ Corresponding author. Tel.: +86 13873195923.
E-mail address: yuanxiaofang126@126.com (X. Yuan).

(a) HS has fewer control parameters and the initial value setting of
decision variables is unnecessary and (b) HS is easy to be imple-
mented and understood.

Recently, there are several attempts to extend the HS to
solve MOPs. Literature [10] has used HS to solve multi-objective
optimization of time-cost trade-off, while this algorithm has
little diversity of non-dominated solutions as it only uses
dominated-based comparison and ignores diversity comparison.
The multi-objective harmony search algorithm proposed by Siva-
subramani et al. [11] is able to converge to Pareto optimal solutions,
however it has low convergence rate and needs a large number
of iterations. This low convergence rate can be attributed to the
use of an improved harmony search (IHS) algorithm [12] whose
convergence rate is far from fast. Two  detailed proposals for apply-
ing basic HS algorithm to solve MOPs have been proposed by
Ricart et al. [13], however these algorithms show poor performance
in terms of convergence and diversity. Pavelski et al. [14] have
investigated four variants of HS algorithm for solving MOPs. How-
ever, these four variants cannot generate true and well-distributed
Pareto optimal solutions. The poor performance of all aforemen-
tioned multi-objective HS algorithms can be attributed to the fact
that these algorithms have poor search abilities for MOPs. More-
over, the control parameters of these multi-objective HS algorithms
need to be set by users according to experience and problem char-
acteristics. As a result, this causes great burden to new users, and
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hinders the application and development of multi-objective HS
algorithm.

In view of the shortcomings of above-mentioned multi-
objective HS algorithms, a self-adaptive multi-objective harmony
search (SAMOHS) algorithm based on harmony memory (HM) vari-
ance is proposed in this paper. The variation of the population
variance has great influence on the explorative ability of the HS
algorithm [15], and the variance of HM reflects the diversity of
HM to some extent [16]. Inspired by these researches, a novel self-
adaptive mechanism based on the variation of the HM variance
is employed in SAMOHS. The proposed self-adaptive mechanism
has three main improvements, they are: (a) each decision vari-
able has its own control parameters, which are updated adaptively
during the search process; (b) a self-adaptive parameter setting
based on variation of HM variance is employed for harmony mem-
ory considering rate (HMCR) and pitch adjusting rate (PAR); (c) a
modified self-adaptive bandwidth (bw) is proposed for HS. By using
the self-adaptive mechanism, the SAMOHS has better adaptability
and robustness. In addition, the global and local search abilities
of SAMOHS are improved, and the burden of parameters setting is
alleviated. For solving MOPs, a non-dominated sorting [1] and trun-
cating procedure [3] are utilized to update the HM effectively and
to preserve the diversity of non-dominated solutions in HM.

The rest of this paper is organized as follows. In Section 2, basic
concepts of MOPs are briefly presented. Section 3 describes the
basic HS algorithm. In Section 4, the motivations and framework of
the proposed SAMOHS algorithm are presented. The experimental
results are given in Section 5. Finally, the conclusion is given in
Section 6.

2. Concepts of MOPs

In this section, basic concepts on multi-objective optimization
relevant to this paper are presented. The mathematical model of
MOPs is formulated as [17]:{

minimize f (x) = {f1(x), f2(x), . . .,  fk(x)}T

subject to x ⊂ S ⊂ Rn
(1)

with k ≥ 2 conflicting objective functions fi : S −→ R. Here f ( x)
denotes the vector of objective function value to be optimized, and
the decision vector x = (x1, x2, . . .,  xn)T belongs to the search space
S defined usually with constraint functions.

Consider two decision vectors g = (g1, g2, . . .,  gn)T ∈ S and h = (h1,
h2, . . .,  hn)T ∈ S for MOPs in Eq. (1), the relation between g and h
can be mathematically described as [18]:⎧⎨
⎩

g ≺≺ h, if ∀i ∈ {1, 2, . . ., k}, gi < hi

g ≺ h, if ∀i ∈ {1, 2, . . ., k}, gi ≤ hi ∩ ∃i ∈ {1, 2, . . .,  k}, gi < hi

g/≺h,  if ∃i ∈ {1, 2, . . .,  k}, gi > hi

(2)

where ≺≺,≺ and /≺denote strong dominance, dominance and not
dominated, respectively.

A decision vector x� ∈ S for this problem is Pareto optimal solu-
tion if there is no x ∈ S satisfies with f ( x) ≺ f ( x�). An objective
vector z� = f ( x�) is called Pareto optimal if corresponding vector
x� is Pareto optimal solution. The set of all Pareto optimal solu-
tions x� ∈ S is called Pareto optimal set, so the Pareto optimal set
is also a set of non-dominated solutions. For a given MOP  and its
corresponding Pareto optimal set P�, the optimal Pareto front (PF)
is defined as PF� = { f ( x) | x ∈ P�}.

The main purpose of multi-objective optimization is to obtain
the Pareto optimal set and the optimal PF. Recently, an exact algo-
rithm in relation to a multi-objective maintenance problem, able
to describe the entire PF in a very short computational time, has
been developed [19]. However, in most cases, finding the optimal
PF that contains all these points is not realistic [20]. Therefore, it is

necessary to find an approximated PF that contains points as evenly
spread and as close as possible with respect to the optimal PF in case
of without any further information. In order to acquire the approx-
imated PF, the common method is to calculate the feasible domain
S and its corresponding f (S) by applying specific algorithms.

3. Basic HS algorithm

HS algorithm is a simple but powerful memory-based stochastic
search technique for solving global optimization problems. In the
basic HS algorithm, each solution is expressed by a n-dimension
real vector and typically named a “harmony” [5]. An initial popu-
lation of harmony vectors stored in a HM is randomly generated.
A new harmony is then improvised based on all harmonies stored
in the HM by applying an improvisation scheme. Afterwards, the
newly generated harmony is compared with the worst harmony in
HM and replaces the worst one if it has a better fitness value. The
algorithm repeats until a predefined stopping condition is met.

A typical optimization problem is formulated as follows:

Minimize f (x) subject to xj ∈ [LBj, UBj], j = 1, 2, . . .,  n (3)

where f( x) is the objective function; x = (x1, x2, . . .,  xn) is the set of
n-dimension decision variable; LBj and UBj denote the lower and
upper limits for xj, respectively.

The main procedure of the basic HS algorithm for optimization
problem in Eq. (3) is described as follows:

Step 1: Initialize the algorithm parameters. The following
parameters of HS algorithm are set: harmony memory size (HMS),
HMCR, bw, PAR, and the number of improvisations (NI).

Step 2: Initialize the harmony memory. In this step, the HM
matrix is filled with HMS randomly generated harmony vectors:

HM =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X1

X2

...

Xi

...

XHMS

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1,1 x1,2 · · · x1,j · · · x1,n

x2,1 x2,2 · · · x2,j · · · x2,n

...
...  · · ·

... · · ·
...

xi,1 xi,2 · · · xi,j · · · xi,n

...
...  · · ·

... · · ·
...

xHMS,1 xHMS,2 · · · xHMS,j · · · xHMS,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

Step 3: Improvise a new harmony. A new harmony vector
Xnew = (xnew,1, xnew,2, . . .,  xnew,n) is generated by applying three rules:
(a) memory consideration, (b) pitch adjustment and (c) random
selection. Generating a new harmony is typically named “improvi-
sation” [21]. The improvisation procedure works as follows:

Algorithm 1. The procedure of improvisation in HS

for j = 1, . . .,  n do
if rand() ≤ HMCR then

xnew,j ∈ {x1,j, x2,j, . . .,  xHMS,j}//memory consideration
if rand() ≤ PAR then
xnew,j = xnew,j ± rand() × bw//pitch adjustment

end if
else
xnew,j = LBj + rand() × (UBj − LBj)//random selection
end if

end for

where rand() is a random number generated from an uniform
distribution of [0,1].

Step 4: Update the harmony memory. If the newly generated
harmony Xnew is better than the worst harmony stored in the HM,
judged by their objective function values, the HM will be updated.
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