
JID:SCICO AID:1996 /FLA [m3G; v1.175; Prn:8/04/2016; 11:07] P.1 (1-27)

Science of Computer Programming ••• (••••) •••–•••

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Embedding attribute grammars and their extensions using 

functional zippers

Pedro Martins a,1, João Paulo Fernandes a,b, João Saraiva a, Eric Van Wyk c,2, 
Anthony Sloane d

a High-Assurance Software Laboratory (HASLAB/INESC TEC), Universidade do Minho, Braga, Portugal
b Reliable and Secure Computation Group ((rel)ease), Universidade da Beira Interior, Covilhã, Portugal
c Department of Computer Science and Engineering, University of Minnesota, Minneapolis, USA
d Department of Computing, Macquarie University, Sydney, Australia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 17 April 2014
Received in revised form 20 February 2016
Accepted 15 March 2016
Available online xxxx

Keywords:
Attribute grammars
Functional programming
Functional zippers
Bidirectional transformations

Attribute grammars are a suitable formalism to express complex software language analysis 
and manipulation algorithms, which rely on multiple traversals of the underlying syntax 
tree. Attribute grammars have been extended with mechanisms such as reference, higher-
order and circular attributes. Such extensions provide a powerful modular mechanism and 
allow the specification of complex computations. This paper studies an elegant and simple, 
zipper-based embedding of attribute grammars and their extensions as first class citizens. 
In this setting, language specifications are defined as a set of independent, off-the-shelf 
components that can easily be composed into a powerful, executable language processor. 
Techniques to describe automatic bidirectional transformations between grammars in this 
setting are also described. Several real examples of language specification and processing 
programs have been implemented.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Attribute Grammars (AGs) [1] are a well-known and convenient formalism not only for specifying the semantic analysis 
phase of a compiler but also to model complex multiple traversal algorithms. Indeed, AGs have been used not only to 
specify real programming languages, for example Haskell [2], but also to specify sophisticated pretty printing algorithms 
[3], deforestation techniques [4,5] and powerful type systems [6].

All these attribute grammars specify complex and large algorithms that rely on multiple traversals over large tree-like 
data structures. To express these algorithms in regular programming languages is difficult because they rely on complex 
recursive patterns, and, most importantly, because there are dependencies between values computed in one traversal and 
used in following ones. In such cases, an explicit data structure has to be used to glue together different traversal functions. 

E-mail addresses: prmartins@di.uminho.pt (P. Martins), jpf@di.ubi.pt (J.P. Fernandes), jas@di.uminho.pt (J. Saraiva), evw@cs.umn.edu (E. Van Wyk), 
anthony.sloane@mq.edu.au (A. Sloane).

1 This author is supported by ERDF – European Regional Development Fund through the COMPETE Programme (operational programme for 
competitiveness) and by National Funds through the FCT – Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and 
Technology) within project ON.2 IC&DT Programa Integrado “BEST CASE – Better Science Through Cooperative Advanced Synergetic Efforts (Ref. 
BIM-2013_BestCase_RL3.2_UMINHO) and project FATBIT – Foundations, Applications and Tools for Bidirectional Transformation (Ref. FCOMP-01-0124-FEDER-
020532).

2 This author is partially supported by NSF Award #1047961.

http://dx.doi.org/10.1016/j.scico.2016.03.005
0167-6423/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.scico.2016.03.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:prmartins@di.uminho.pt
mailto:jpf@di.ubi.pt
mailto:jas@di.uminho.pt
mailto:evw@cs.umn.edu
mailto:anthony.sloane@mq.edu.au
http://dx.doi.org/10.1016/j.scico.2016.03.005


JID:SCICO AID:1996 /FLA [m3G; v1.175; Prn:8/04/2016; 11:07] P.2 (1-27)

2 P. Martins et al. / Science of Computer Programming ••• (••••) •••–•••

In an imperative setting those values are stored in the tree nodes (which work as a gluing data structure), while in a 
declarative setting such data structures have to be defined and constructed. In an AG setting, the programmer does not 
have to concern himself or herself with scheduling traversals, nor on defining gluing data structures.

Recent research in attribute grammars has proceeded primarily in two directions.
Firstly, attribute grammars are embedded in regular programming languages with AG fragments as first-class values in 

the language: they can be analyzed, reused and compiled independently [7–11]. First class AGs provide:

i) A full component-based approach to AGs where a language is specified/implemented as a set of reusable off-the-shelf 
components;

ii) Semantic-based modularity, while some traditional AG systems use a (restricted) syntactic approach to modularity.

Moreover, by using an embedding approach there is no need to construct a large AG (software) system to process, 
analyze and execute AG specifications. First class AGs reuse for free the mechanisms provided by the host language as much 
as possible, while increasing abstraction in the host language. Although this option may also entail some disadvantages, e.g. 
error messages relating to complex features of the host language instead of specificities of the embedded language, the fact 
is that an entire infrastructure, including libraries and language extensions, is readily available at a minimum cost. Also, the 
support and evolution of such infrastructure is not a concern.

Secondly, AG-based systems have extended the standard AG formalism which improves the expressiveness of AGs. 
Higher-order AGs (HOAGs) [12,13] provide a modular extension to AGs in which abstract trees can be stored as attribute 
values. Reference AGs (RAGs) [14,15] allow the definition of references to remote parts of the tree, and, thus, extend the 
traditional tree-based algorithms to graphs. Finally, Circular AGs (CAGs) allow the definition of fix-point based algorithms.
AG systems like Silver [16,17], JastAdd [18], and Kiama [11] all support such extensions.

However, and even considering their modern extensions, attribute grammars only provide support for specifying uni-
directional transformations, despite bidirectional transformations being common in AG applications. Bidirectional transfor-
mations are especially common between abstract/concrete syntax. For example, when reporting errors discovered on the 
abstract syntax we want error messages to refer to the original code, not a possible de-sugared version of it. Or when 
refactoring source code, programmers should be able to evolve the refactored code, and have the change propagated back 
to the original source code.

In this work, we present the first embedding of HOAGs, RAGs and CAGs as first class attribute grammars, an embedding 
which is also powerful enough to express bidirectional transformations. Indeed, we revise the zipper-based AG embedding 
proposed in [9] to extend it with the bidirectional capabilities of [19]. We have used this embedding in a number of 
applications, e.g., in developing techniques for a language processor to implement bidirectional AG specifications and to 
construct a software portal.

In the remainder of the paper, we start by revising the concise embedding of AGs in Haskell of [9]. This embedding 
relies on the extremely simple mechanism of functional zippers. Zippers were originally conceived by Huet [20] for a purely 
functional environment and represent a tree together with a subtree that is the focus of attention, where that focus may 
move within the tree. By providing access to any element of a tree, zippers are very convenient in our setting: attributes may 
be defined by accessing other attributes in other nodes. Moreover, they do not rely on any advanced feature of Haskell
such as lazy evaluation or type classes. Thus, our embedding can be straightforwardly re-used in any other functional 
environment.

Finally, we extend our embedding with the primary AG extensions proposed to the AG formalism and with novel tech-
niques for AG-based bidirectionalization systems.

This paper is organized as follows: in Section 2 we motivate our approach with the introduction of both our running example 
and AGs. In Section 3 we introduce zippers and explain how they can be used to embed AGs in a functional setting, and 
implement an AG in our setting.

Section 4 extends our running example and defines an AG implementing the scope rules for the newly defined language, 
with the aid of AG references. Section 5 describes the embedding of higher-order attributes as an extension to AGs and 
presents an example of an AG that uses this extension. In Section 6 we describe another AG extension, circularity, showing 
how it can be implemented with our technique, and give practical examples that build on the previous section.

In Section 7 a technique for defining a bidirectionalization system for AGs is presented, with an example providing 
automatic transformations between a concrete and an abstract version of our running example.

In Section 8 the reader is presented with works that relate to ours, either by having similar techniques or domains. 
Section 9 concludes this paper and Section 10 shows possible future research work.

2. Motivation

As a running example throughout this paper, we will describe and use the LET language, that could for example be used 
to define let expressions as incorporated in the functional languages Haskell [21] or ML [22].



Download English Version:

https://daneshyari.com/en/article/4951894

Download Persian Version:

https://daneshyari.com/article/4951894

Daneshyari.com

https://daneshyari.com/en/article/4951894
https://daneshyari.com/article/4951894
https://daneshyari.com

