
JID:SCICO AID:2038 /FLA [m3G; v1.184; Prn:5/08/2016; 13:42] P.1 (1-33)

Science of Computer Programming ••• (••••) •••–•••

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Contextual abstraction in a type system for component-based 

high performance computing platforms

Francisco Heron de Carvalho Junior ∗, Cenez Araújo Rezende, 
Jefferson de Carvalho Silva, Wagner Guimarães Al-Alam, 
João Marcelo Uchoa de Alencar

Mestrado e Doutorado em Ciência da Computação, Universidade Federal do Ceará, Brazil

a r t i c l e i n f o a b s t r a c t

Article history:
Received 19 April 2014
Received in revised form 20 July 2016
Accepted 21 July 2016
Available online xxxx

Keywords:
Component-based software engineering
High performance computing
Component-based high performance 
computing
Parallel programming
Type systems

HTS (Hash Type System) is a type system designed for component-based high performance 
computing (CBHPC) platforms, aimed at reconciling portability, modularity by separation 
of concerns, a high-level of abstraction and high performance. Portability and modularity 
are properties of component-based systems that have been extensively validated. For 
improving the performance of HPC applications, HTS introduces an automated approach 
for dynamically discovering, loading and binding parallel components tuned for the 
characteristics of the parallel computing platforms where the application will execute. 
To do so, it is based on contextual abstraction, where the performance of components 
that encapsulate parallel computations, communication patterns and data structures may 
be tuned according to the features of parallel computing platforms and the application 
requirements. In turn, for providing a higher level of abstraction in parallel programming, 
HTS supports an expressive approach for skeleton-based programming. A study of the 
safety properties of HTS using a calculus of component composition has provided solid 
foundations for the design of configuration languages for the safe specification and 
deployment of parallel components. The features of HTS are validated with three case 
studies that exercise the programming techniques behind contextual abstraction, including 
skeletons and performance tuning.

© 2016 Published by Elsevier B.V.

1. Introduction

Since the 2000s, the advent of grids [1] and clouds [2] has broadened the horizon of High Performance Computing (HPC) 
applications. They inaugurated the era of large-scale HPC platforms comprised of heterogeneous collections of computational 
resources. These platforms may attend to the high performance requirements of a number of applications that present 
outstanding impacts in scientific discovery and technological innovation, when they are orchestrated in an effective way. 
By using these platforms, scientists and engineers have proposed innovative environments for cooperative interdisciplinary 
work, moving forward the scale and complexity of modern HPC software [3]. With the consolidation of heterogeneous 
parallel computing, where different kinds of processors [4], accelerators [5–7] and multiple memory hierarchies may be 
orchestrated to solve computation problems, the effective use of HPC resources became even more challenging [8]. Such a 

* Corresponding author.
E-mail addresses: heron@lia.ufc.br (F.H. de Carvalho Junior), cenezaraujo@lia.ufc.br (C.A. Rezende), jeffersoncarvalho@lia.ufc.br (J. de Carvalho Silva), 

joao.marcelo@lia.ufc.br (J.M. Uchoa de Alencar).

http://dx.doi.org/10.1016/j.scico.2016.07.005
0167-6423/© 2016 Published by Elsevier B.V.

http://dx.doi.org/10.1016/j.scico.2016.07.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:heron@lia.ufc.br
mailto:cenezaraujo@lia.ufc.br
mailto:jeffersoncarvalho@lia.ufc.br
mailto:joao.marcelo@lia.ufc.br
http://dx.doi.org/10.1016/j.scico.2016.07.005


JID:SCICO AID:2038 /FLA [m3G; v1.184; Prn:5/08/2016; 13:42] P.2 (1-33)

2 F.H. de Carvalho Junior et al. / Science of Computer Programming ••• (••••) •••–•••

context increases the demand for research about new programming models, techniques and abstractions for addressing both 
the increasing degree of scale and complexity of HPC software and the tuning of its performance according to the particular 
characteristics of target parallel computer architectures.

Components are independent units of software composition with well-defined interfaces, subject to independent deploy-
ment and third-party composition [9–11]. Component-based software engineering (CBSE) has been successfully applied in 
the software industry in dealing with the complexity and scale of business software. In turn, the research works on the de-
sign and implementation of component-based high performance computing (CBHPC) platforms have investigated how to use 
components in dealing with complexity and scale of software with HPC requirements. More recently, they have approached 
the challenge behind heterogeneity of parallel computing platforms [8]. CBHPC has been guided by the researchers involved 
in a number of initiatives, including CCA (Common Component Architecture) [12], Fractal [13], and GCM (Grid Compo-
nent Model) [14]. Most of these researchers are computational scientists and engineers who have presented successful case 
studies of CBHPC platforms in the last few years, using real applications.

The design of CCA has been driven by the requirements of frameworks for computational science applications (com-
putational frameworks) [15], aiming at minimizing overheads in component bindings and supporting typical data types of 
scientific applications through SIDL (Scientific Interface Definition Language). A number of computational frameworks and 
component platforms have adhered to CCA [16–19]. Other CCA frameworks have been developed from scratch for evaluat-
ing alternative framework designs focused on different requirements, such as parallelism support [20–22]. In turn, Fractal 
[23] is a hierarchical component model where components may be recursively composed to form new components. Julia, 
AOKell and ProActive/Fractal are implementations of Fractal. GCM, implemented by ProActive/GCM [24], extends Fractal with 
autonomic, adaptation and reconfiguration capabilities for grid computing [14].

Our main contribution to CBHPC is the Hash component model, which faces the lack of models that reconcile expres-
siveness and efficiency in building software with parallel components [25]. HPE (Hash Programming Environment) is the 
reference implementation of Hash. It manages the life-cycle of parallel components, called #-components, targeted at clus-
ter computing platforms [26]. HPE complies with CCA, introducing support for parallelism, distribution and hierarchical 
composition into the design of CCA frameworks [27]. Experimental studies have reported that #-components may reconcile 
expressiveness and performance in the component-based development of parallel programs [19].

For the purposes of this paper, we define a parallel computing system as a view that integrates HPC software and the 
parallel computing platform (HPC hardware) where it will execute. This is a convenient way of viewing the design of par-
allel programs with critical performance requirements, since the choice of the best algorithms and parallelism strategies 
for implementing them is highly dependent on the architecture of their target parallel computing platforms [28]. For in-
stance, consider a parallel computing system built from components of a CBHPC platform. However, instead of making 
direct reference to each component, the parallel computing system only specifies what it requires and what it provides to 
the component, delegating to a resolution system the selection of a component that may maximize its overall performance.

We report how we address, in the context of HPE, the problem of selecting the component that best satisfies the needs of 
a parallel computing system from a set of alternative implementations cataloged in a library. To that end, we introduce the 
abstraction of context for making assumptions, in a parallel computing system, about the requirements of the application 
and the features of the target parallel computing platform. This is so-called contextual abstraction. Contextual abstraction 
becomes more relevant as heterogeneous parallel computing platforms become more widespread. So, contextual abstrac-
tion is particularly relevant for the requirements of computational environments that either provide heterogeneous parallel 
computing platforms as resources (e.g. grids) or use them for enabling higher-level HPC services (e.g. clouds).

This paper introduces HTS (Hash Type System), the component type system of HPE for supporting contextual abstraction. 
It automates the performance tuning of parallel components according to the features of parallel computing platforms, by 
minimizing the end-user intervention and delegating performance tuning responsibilities to parallel programming special-
ists. It is based on a kind of contractual interface, a so-called abstract component. An abstract component represents a set 
of components that address a well-defined concern. The implementation of each component is tuned according to a set of 
context parameters. The contextual abstraction distinguishes HTS from other component adaptability approaches proposed 
by CBHPC platforms. We claim that HTS contributes to advancing the state-of-the-art of CBHPC platforms in addressing the 
problem of dealing with large-scale heterogeneous HPC systems.

HTS applies skeleton programming [29,30] to CBHPC platforms. In component-based skeleton-programming, components 
may encapsulate patterns of parallel computation, communication and synchronization that may be particularized through 
polymorphism and tuned for performance through contextual abstraction. Using this approach, component developers may 
tune the performance of the pattern implementation according to the particular architectural features of the target parallel 
computing platform. This is a key feature that must be supported by skeleton programming systems.

The three case studies presented in this paper demonstrate how a component-based approach of skeleton-programming 
may be implemented using contextual abstraction. Therefore, the first two case studies show how to use the well-known 
parallel programming skeleton so-called Farm for implementing numerical integration and Map-Reduce, a parallel computing 
pattern that has been widely adopted in large-scale data parallel processing. Map-Reduce may be also viewed as a skeleton 
[31]. In particular, we show how it may be implemented as a composition of farms. In turn, the third case study presents 
the alternating direct implicit (ADI), a solution method for sparse systems of equations, as a skeleton. These case studies show 
the role of HTS in the instantiation of skeletons to particular computations, in such a way that not only the performance 
of the skeleton is tuned for the target parallel computing platform, but also the performance of the components used to 



Download English Version:

https://daneshyari.com/en/article/4951898

Download Persian Version:

https://daneshyari.com/article/4951898

Daneshyari.com

https://daneshyari.com/en/article/4951898
https://daneshyari.com/article/4951898
https://daneshyari.com

