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In this paper, we introduce and investigate the Minimum Eccentricity Shortest Path (MESP)
problem in unweighted graphs. It asks for a given graph to find a shortest path with 
minimum eccentricity. Let n and m denote the number of vertices and the number of 
edges of a given graph. We demonstrate that:

• a minimum eccentricity shortest path plays a crucial role in obtaining the best to date 
approximation algorithm for a minimum distortion embedding of a graph into the 
line;

• the MESP problem is NP-hard for planar bipartite graphs with maximum degree 3 and 
W[2]-hard for general graphs;

• a shortest path of minimum eccentricity k can be computed in O(n2k+2m) time;
• a 2-approximation, a 3-approximation, and an 8-approximation for the MESP problem 

can be computed in O(n3) time, in O(nm) time, and in O(m) time, respectively;
• in a graph with a shortest path of eccentricity k, a k-dominating set can be found 

in nO(k) time.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

All graphs occurring in this paper are connected, finite, unweighted, undirected, loopless and without multiple edges. For 
a graph G = (V , E), we use n = |V | and m = |E| to denote the cardinality of the vertex set and the edge set of G . For a ver-
tex v of G , NG(v) = { u ∈ V | uv ∈ E } is called the open neighbourhood, and NG [v] = NG(v) ∪ {v} the closed neighbourhood
of v .

The length of a path from a vertex v to a vertex u is the number of edges in the path. The distance dG(u, v) of two 
vertices u and v is the length of a shortest path connecting u and v . The distance between a vertex v and a set S ⊆ V
is defined as dG (v, S) = minu∈S dG(u, v). The eccentricity eccG(v) of a vertex v is maxu∈V dG(u, v). For a set S ⊆ V , its 
eccentricity is eccG(S) = maxu∈V dG(u, S).

In this paper, we investigate the following problem.

Definition 1 (Minimum eccentricity shortest path problem). For a given graph G , find a shortest path P such that, for each 
shortest path Q , eccG(P ) ≤ eccG(Q ).
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Although this problem might be of an independent interest (it may arise in determining a “most accessible” speedy 
linear route in a network and can find applications in communication networks, transportation planning, water resource 
management and fluid transportation), our interest in this problem stems from the role it plays in obtaining the best to 
date approximation algorithm for a minimum distortion embedding of a graph into the line. In Section 2, we demonstrate 
that every graph G with a shortest path of eccentricity k admits an embedding f of G into the line with distortion at most 
(8k + 2) ld(G), where ld(G) is the minimum line-distortion of G . Furthermore, if a shortest path of G of eccentricity k is 
given in advance, then such an embedding f can be found in linear time.

This fact augments the importance of investigating the Minimum Eccentricity Shortest Path problem (MESP problem) in 
graphs. Fast algorithms for it will imply fast approximation algorithms for the minimum line distortion problem. Existence of 
low eccentricity shortest paths in special graph classes will imply low approximation bounds for those classes. For example, 
all AT-free graphs (and hence all interval, permutation, cocomparability graphs) enjoy a shortest path of eccentricity at 
most 1 [4], all convex bipartite graphs enjoy a shortest path of eccentricity at most 2 [9].

We prove also that for every graph G with ld(G) = λ, the minimum eccentricity of a shortest path of G is at most
⌊

λ
2

⌋
. 

Hence, one gets an efficient embedding of G into the line with distortion at most O(λ2).
In Section 3, we show that the MESP problem is NP-hard for bipartite planar graphs with maximum degree 3, W[2]-hard 

on general graphs, and that a shortest path of minimum eccentricity k, in general graphs, can be computed in O(n2k+2m)

time. In Section 4, we design, for the MESP problem on general graphs, a 2-approximation algorithm that runs in O(n3)

time, a 3-approximation algorithm that runs in O(nm) time and an 8-approximation algorithm that runs in linear time. In 
Section 5, we will show that in a graph with a shortest path of eccentricity k a k-dominating set can be found in nO(k) time.

Note that our Minimum Eccentricity Shortest Path problem is close but different from the Central Path problem in graphs 
introduced in [21]. It asks for a given graph G to find a path P (not necessarily shortest) such that any other path of G has 
eccentricity at least eccG(P ). The Central Path problem generalizes the Hamiltonian Path problem and therefore is NP-hard 
even for chordal graphs [20]. Our problem is polynomial time solvable for chordal graphs [10].

In what follows, we will need the following additional notions and notations.
The diameter of a graph G is diam(G) = maxu,v∈V dG(u, v). The diameter diamG(S) of a set S ⊆ V is defined as 

maxu,v∈S dG(u, v). A pair of vertices x, y of G is called a diametral pair if dG (u, v) = diam(G). In this case, every short-
est path connecting x and y is called a diametral path.

A path P of a graph G is called a k-dominating path of G if eccG(P ) ≤ k. In this case, we say also that P k-dominates
each vertex of G . A pair of vertices x, y of G is called a k-dominating pair if every path connecting x and y has eccentricity 
at most k.

For a vertex s, let L(s)
i = { v | dG(s, v) = i } denote the vertices with distance i from s. We will also refer to L(s)

i as the i-th 
layer.

2. Motivation through the line-distortion of a graph

Computing a minimum distortion embedding of a given n-vertex graph G into the line � was recently identified as 
a fundamental algorithmic problem with important applications in various areas of computer science, like computer vi-
sion [22], as well as in computational chemistry and biology (see [16,17]). The minimum line distortion problem asks, for 
a given graph G = (V , E), to find a mapping f of vertices V of G into points of � with minimum number λ such that 
dG(x, y) ≤ | f (x) − f (y)| ≤ λ dG(x, y) for every x, y ∈ V . The parameter λ is called the minimum line-distortion of G and 
denoted by ld(G). The embedding f is called non-contractive since dG (x, y) ≤ | f (x) − f (y)| for every x, y ∈ V .

In [2], Bǎdoiu et al. showed that this problem is hard to approximate within some constant factor. They gave an 
exponential-time exact algorithm and a polynomial-time O(n1/2)-approximation algorithm for arbitrary unweighted in-
put graphs, along with a polynomial-time O(n1/3)-approximation algorithm for unweighted trees. In fact, their algorithms 
achieve line-distortion O (λ2) for general (unweighted) graphs, and line-distortion O (λ3/2) for unweighted trees, where λ is 
the minimum line-distortion. In another paper [1], Bǎdoiu et al. showed that the problem is hard to approximate by a factor 
O(n1/12), even for weighted trees. They also gave a better polynomial-time approximation algorithm for general weighted 
graphs, along with a polynomial-time algorithm that approximates the minimum line-distortion λ embedding of a weighted 
tree by a factor that is polynomial in λ.

Fast exponential-time exact algorithms for computing the line-distortion of a graph were proposed in [5,12,13]. Fomin 
et al. [13] showed that a minimum distortion embedding of an unweighted graph into the line can be found in time 5n+o(n) . 
Fellows et al. [12] gave an O(nλ4(2λ + 1)2λ) time algorithm that for an unweighted graph G and integer λ either constructs 
an embedding of G into the line with distortion at most λ, or concludes that no such embedding exists. They extended 
their approach also to weighted graphs obtaining an O(nλ4W (2λ + 1)2λW ) time algorithm, where W is the largest edge 
weight. Thus, the problem of minimum distortion embedding of a given n-vertex graph G into the line � is Fixed Parameter 
Tractable. Recently, Cygan and Pilipczuk [5] enhanced the 5n+o(n) time and O∗(2n) space algorithm by Fomin et al. [13] to 
an algorithm working in O(4.383n) time and space.

Heggernes et al. [14,15] initiated the study of minimum distortion embeddings into the line of specific graph classes 
other than trees. In particular, they gave polynomial-time algorithms for the problem on bipartite permutation graphs 
and on threshold graphs [15]. Furthermore, in [14], Heggernes et al. showed that the problem of computing a minimum 
distortion embedding of a given graph into the line remains NP-hard even when the input graph is restricted to a bipartite, 
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