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An abelian square is the concatenation of two words that are anagrams of one another. 
A word of length n can contain at most �(n2) distinct factors, and there exist words 
of length n containing �(n2) distinct abelian-square factors, that is, distinct factors that 
are abelian squares. This motivates us to study infinite words such that the number of 
distinct abelian-square factors of length n grows quadratically with n. More precisely, we 
say that an infinite word w is abelian-square-rich if, for every n, every factor of w of 
length n contains, on average, a number of distinct abelian-square factors that is quadratic 
in n; and uniformly abelian-square-rich if every factor of w contains a number of distinct 
abelian-square factors that is proportional to the square of its length. Of course, if a 
word is uniformly abelian-square-rich, then it is abelian-square-rich, but we show that the 
converse is not true in general. We prove that the Thue–Morse word is uniformly abelian-
square-rich and that the function counting the number of distinct abelian-square factors of 
length 2n of the Thue–Morse word is 2-regular. As for Sturmian words, we prove that a 
Sturmian word sα of angle α is uniformly abelian-square-rich if and only if the irrational 
α has bounded partial quotients, that is, if and only if sα has bounded exponent.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

A fundamental topic in combinatorics on words is the study of repetitions. A repetition in a word is a factor that is 
formed by the concatenation of two or more identical blocks. The simplest kind of repetition is a square, that is, the 
concatenation of two copies of the same block, such as the English word hotshots. A famous conjecture of Fraenkel and 
Simpson [20] states that a word of length n contains fewer than n distinct square factors. Experiments strongly suggest that 
the conjecture is true, but a theoretical proof of the conjecture seems difficult. In [20], the authors proved a bound of 2n. 
In [25], Ilie improved this bound to 2n − �(log n), and recently Deza et al. showed the current best bound of 11

6 n [12], but 
the conjectured bound is still out of reach.

Other variations on counting squares include counting squares in partial words (e.g., [5]) and pseudo-repetitions 
(e.g., [22]).

Among the different generalizations of the notion of repetition, a prominent one is that of an abelian repetition. An 
abelian repetition in a word is a factor that is formed by the concatenation of two or more blocks that have the same 
number of occurrences of each letter in the alphabet. Of course, the simplest kind of abelian repetition is an abelian square, 

✩ Some of the results contained in this paper were presented (without the third author) at the 10th International Conference on Words, WORDS 2015 [19].
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that is, the concatenation of a word with an anagram of itself, such as the English word intestines. Abelian squares were 
considered in 1961 by Erdős [16], who conjectured that there exist infinite words avoiding abelian squares. This conjecture 
was later confirmed, and the smallest possible size of an alphabet for which it holds is known to be 4 [26].

We focus on the maximum number of distinct abelian squares that a word can contain. In contrast to the case of ordinary 
squares, a word of length n can contain �(n2) distinct abelian-square factors (see [27]). Since the total number of factors in 
a word of length n is quadratic in n, this means that there exist words in which a constant fraction of all factors are abelian 
squares. So we turn our attention to infinite words, and we ask whether there exist infinite words such that for every n the 
factors of length n contain, on average, a number of distinct abelian-square factors that is quadratic in n. We call such an 
infinite word abelian-square-rich. Since a random binary word of length n contains �(n

√
n) distinct abelian-square factors 

[10], the existence of abelian-square-rich words is not immediate. We also introduce uniformly abelian-square-rich words; 
these are infinite words such that for every n, every factor of length n contains a quadratic number of distinct abelian 
squares. Of course, if a word is uniformly abelian-square-rich, then it is abelian-square-rich, but the converse is not true in 
general — we provide in this paper an example of a word that is abelian-square-rich but not uniformly abelian-square-rich. 
However, we show that for linearly recurrent words the two definitions are equivalent. Moreover, we prove that if an infinite 
word w is uniformly abelian-square-rich, then w has bounded exponent (that is, there exists an integer k ≥ 2 such that w
does not contain any repetition of order k as a factor).

We then prove that the famous Thue–Morse word is uniformly abelian-square-rich. Furthermore, we look at the function 
that counts the number of distinct abelian squares of length 2n in the Thue–Morse word and prove that this function is 
2-regular.

Then we look at the class of Sturmian words; these are aperiodic infinite words with the lowest possible factor com-
plexity. In this case, we prove that a Sturmian word has bounded exponent if and only if it is uniformly abelian-square-rich, 
and leave open the question of determining whether a Sturmian word is not abelian-square-rich in the case when it does 
not have bounded exponent.

2. Notation and background

Let � = {a1, a2, . . . , aσ } be an ordered σ -letter alphabet. Let �∗ stand for the free monoid generated by �, whose 
elements are called words over �. The length of a word w is denoted by |w|. The empty word, denoted by ε, is the unique 
word of length zero and is the neutral element of �∗ . We also define �+ = �∗ \ {ε}.

A prefix (respectively, a suffix) of a word w is a word u such that w = uz (respectively, w = zu) for some word z. A factor
of w is a prefix of a suffix (or, equivalently, a suffix of a prefix) of w . The set of prefixes, suffixes and factors of the word 
w are denoted, respectively, by Pref(w), Suff(w) and Fact(w). From the definitions, we have that ε is a prefix, a suffix and 
a factor of every word.

A word w is a k-power (also called a repetition of order k), for an integer k ≥ 2, if there exists a nonempty word u such 
that w = uk . A 2-power is called a square. The period of a word w = w1 w2 · · · w |w| is the minimal integer p such that 
wi+p = wi for every 1 ≤ i ≤ |w| − p. The exponent e(w) of a word w is the ratio between its length |w| and its period p. 
For example, the period of w = abaab is p = 3, hence e(w) = 5/3. Of course, if a word w avoids k-powers (that is, no factor 
of w is a k-power), then the supremum of the exponents of factors of w is smaller than k.

For a word w and a letter ai ∈ �, we let |w|ai denote the number of occurrences of ai in w . The Parikh vector (sometimes 
called the composition vector) of a word w over � = {a1, a2, . . . , aσ } is the vector P (w) = (|w|a1 , |w|a2 , . . . , |w|aσ ). An abelian 
k-power is a nonempty word of the form v1 v2 · · · vk where all the vi have the same Parikh vector (and therefore in particular 
the same length). An abelian 2-power is called an abelian square; an example in English is the word reappear.

An infinite word w over � is an infinite sequence of letters from �, that is, a function w : N �→ �. An infinite word is 
recurrent if each of its factors occurs infinitely often. Given an infinite word w , the recurrence index R w(n) of w is defined to 
be the least integer m such that every factor of w of length m contains all factors of w of length n, or +∞ if such an integer 
does not exist. If the recurrence index is finite for every n, the infinite word w is called uniformly recurrent and the function 
R w(n) the recurrence function of w . A uniformly recurrent word is of course recurrent, but the converse is not always true. 
For example, the Champernowne word w = 011011100101 · · · , obtained by concatenating the base-2 representations of the 
natural numbers, is recurrent but not uniformly recurrent (to see this, it is sufficient to observe that it contains arbitrarily 
large consecutive blocks of the same letter). A uniformly recurrent word w is called linearly recurrent if the ratio R w(n)/n
is bounded by a constant. Given a linearly recurrent word w , the real number rw = lim supn→∞ R w(n)/n is called the 
recurrence quotient of w . The factor complexity function (sometimes called subword complexity) of an infinite word w is the 
integer function pw(n) defined by pw(n) = | Fact(w) ∩ �n|. An infinite word w has linear complexity if pw(n) = O (n). In 
particular, if a word is linearly recurrent, then it has linear complexity (see, for example, [15]).

A substitution over the alphabet � is a map τ : � �→ �+ . A substitution τ over � can be naturally extended to a 
(non-erasing) morphism from �∗ to �∗ . A substitution can be iterated: for every substitution τ and every n > 0, using 
the extension to a morphism, one can define the substitution τn . A substitution τ is r-uniform if there exists an integer 
r ≥ 1 such that for all a ∈ �, |τ (a)| = r. A substitution is called uniform if it is r-uniform for some r ≥ 1. A substitution τ
is primitive if there exists an integer n ≥ 1 such that for every a ∈ �, the word τn(a) contains every letter of � at least 
once. In this paper, we will only consider primitive substitutions such that τ (a1) = a1 v for a letter a1 and some nonempty 
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