
Theoretical Computer Science 687 (2017) 79–92

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

A space efficient algorithm for the longest common 

subsequence in k-length substrings

Daxin Zhu a, Lei Wang b, Tinran Wang c, Xiaodong Wang d,∗
a Quanzhou Normal University, Quanzhou, China
b Facebook, 1 Hacker Way, Menlo Park, CA 94052, USA
c School of Mathematical Sciences, Peking University, Beijing, China
d Fujian University of Technology, Fuzhou, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 9 February 2017
Received in revised form 17 May 2017
Accepted 19 May 2017
Available online 26 May 2017
Communicated by R. Giancarlo

Keywords:
Longest common subsequence
Similarity of strings
Edit distance
Dynamic programming

Two space efficient algorithms to solve the LC Sk problem and LC S≥k problem are 
presented in this paper. The algorithms improve the time and space complexities of the 
algorithms of Benson et al. [4]. The space cost of the first algorithm to solve the LC Sk
problem is reduced from O (n2) to O (kn), if the size of the two input sequences are both n. 
The time and space costs of the second algorithm to solve the LC S≥k problem are both 
improved. The time cost is reduced from O (kn2) to O (n2), and the space cost is reduced 
from O (n2) to O (kn). In the case of k = O (1), the two algorithms are both linear space 
algorithms.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The longest common subsequence (LCS) problem is a classic problem in computer science [8,17]. Given two sequences 
A and B , the longest common subsequence (LCS) problem is to find a subsequence of A and B whose length is the longest 
among all common subsequences of the two given sequences. The problem has numerous applications in many appar-
ently unrelated fields ranging from file comparison, pattern matching and computational biology [11]. The LCS problem has 
many variants, such as LCS alignment [13–15], constrained LCS [2,5,16,18,19], weighted LCS [1], restricted LCS [7] and LCS 
approximation [12].

In past years, many related sequence similarity problems, often motivated by computational biology, have also been stud-
ied. One of them, proposed very recently by Benson et al. [3,4], is the longest common subsequence in k-length substrings 
problem, in which the common subsequence is required to consist of k or at least k length substrings.

The LC Sk problem can be characterized as follows.

Definition 1. Given two sequences A = a1a2 · · ·an and B = b1b2 · · ·bm , and an integer k, the LC Sk problem is to find the max-
imal length l such that there are l substrings, ai1 · · ·ai1+k−1, · · · , ail · · ·ail+k−1, identical to b j1 · · ·b j1+k−1, · · · , b jl · · ·b jl+k−1
where {ait } and {b jt } are in increasing order for 1 ≤ t ≤ l and any two k-length substrings in the same sequence, do not 
overlap.

* Corresponding author.
E-mail address: wangxd139@139.com (X. Wang).

http://dx.doi.org/10.1016/j.tcs.2017.05.015
0304-3975/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2017.05.015
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:wangxd139@139.com
http://dx.doi.org/10.1016/j.tcs.2017.05.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2017.05.015&domain=pdf


80 D. Zhu et al. / Theoretical Computer Science 687 (2017) 79–92

A similar problem is the LCS at least k problem (LC S≥k). In this problem, the demand of matching substrings of length 
exactly k is relaxed to the length of the matched substrings to be at least k. The length of the common substrings is further 
limited by 2k − 1 since a longer common substring contains two substrings each of length k or more.

The LC S≥k problem can be defined as follows.

Definition 2. Given two sequences A = a1a2 · · ·an and B = b1b2 · · ·bm , and an integer k, the LC S≥k problem is to find 
substrings with maximal total length such that aip · · ·aip+k+t is identical to b jp · · ·b jp+k+t for −1 ≤ t ≤ k − 2 where {ait }
and {b jt } are in increasing order for 1 ≤ t ≤ l and any two substrings in the same sequence, do not overlap.

In the case of n = m, Benson et al. [3] presented a dynamic programming algorithm to solve the LC Sk problem using 
O (kn2) time and O (n2) space. In the case of k = O (1), the time complexity of the algorithm becomes O (n2). For unbounded 
k, the time complexity was further improved from O (kn2) to O (n2) [4,6]. If only the length of LC Sk has to be computed, 
the space cost of their algorithm can be reduced to O (kn), but if an LC Sk has to be constructed, the whole table is needed 
in their algorithm, implying O (n2) space requirement. Applying the sparse dynamic programming paradigm of Hunt and 
Szymanski [10], Deorowicz et al. [6] presented an O (n + r log l) time and O (r) space algorithm, where r is the number 
of matches, l ≤ n/k is the solution length. If the number of matches in the dynamic programming matrix is large, an 
O (n2/k + n(k log n)2/3) and O (nl) space algorithm was also presented in [6] by using the observation that matches forming 
a longest common subsequence must be separated with gaps of size at least k. Its variant based on the van Emde Boas tree 
was also briefly discussed. Finally, a tabulation-based algorithm was presented, using O (n2/ log n) time and O (n2/ log n)

space.
For the LC S≥k problem, Benson et al. [4] presented a first dynamic programming algorithm to solve the problem using 

O (kn2) time and O (n2) space. If only the length of LC S≥k has to be computed, the space cost of their algorithm can be 
reduced to O (kn), but if an LC S≥k has to be constructed, their algorithm requires O (n2) space.

Very recently, Ueki et al. presented a similar dynamic programming algorithm to solve the problem [16]. The algorithm 
was described very concisely in their paper since the main topic in their paper is to find the LCS in at least k length 
order-isomorphic substrings problem. Their algorithm composes of two parts. In the first part, the longest common suffix 
problem for the same input strings is solved. Then, in the second part of the algorithm, a dynamic programming formula 
can be established by utilizing the solution array L obtained in the first part. If the sizes of the two input strings are m and 
n respectively, their algorithm requires O (mn) time and O (mn) space since three tables of size (m + 1)(n + 1) are used. If 
only the length of an LC S≥k is required, the space complexity can be easily reduced to O (kn). The algorithm presented in 
this paper for the same problem requires also O (mn) time, but uses only O (kn) space.

In this paper, we focus on the space efficient algorithms to solve the LC Sk problem and LC S≥k problem. We present two 
new algorithms to solve the problems. The first algorithm is a dynamic programming algorithm to solve the LC Sk problem, 
using O (mn) time and O (kn) space, if the sizes of the input sequences are n and m respectively. In the case of k = O (1), 
the algorithm is a linear space algorithm.

The second algorithm is an improved algorithm of Benson et al. to solve the LC S≥k problem. The time complexity is 
reduced from O (kmn) to O (mn), and the space complexity is reduced from O (mn) to O (kn). In the case of k = O (1), the 
algorithm is also a linear space algorithm.

The organization of the paper is as follows.
In the following 3 sections, we describe our improved algorithms of Benson et al to solve the LC Sk and LC S≥k problems.
In Section 2, we present an O (kn) space algorithm for solving the LC Sk problem. In Section 3, the time and space costs 

of the algorithm of Benson et al to solve the LC S≥k problem are reduced to O (mn) and O (kn). Some concluding remarks 
are placed in Section 4.

2. An O (kn) space algorithm for solving the LC Sk problem

2.1. The description of the algorithm

As stated in [8], LC Sk can be solved by using a dynamic programming algorithm. Let d(i, j) denote the length of the 
longest match between the prefixes of A[1 : i] = a1a2 · · ·ai and B[1 : j] = b1b2 · · ·b j . Then, d(i, j) can be computed recur-
sively as follows.

d(i, j) =
{

1 + d(i − 1, j − 1) if ai = b j,

0 otherwise
(1)

Let f (i, j) denote the number of k matchings in the longest common subsequence, consisting of k matchings in the 
prefixes A[1 : i] and B[1 : j]. Then, f (i, j) can be computed recursively as follows.

f (i, j) = max

⎧⎪⎨
⎪⎩

f (i − 1, j)

f (i, j − 1)

f (i − k, j − k) + δ(d(i, j))

(2)



Download	English	Version:

https://daneshyari.com/en/article/4951996

Download	Persian	Version:

https://daneshyari.com/article/4951996

Daneshyari.com

https://daneshyari.com/en/article/4951996
https://daneshyari.com/article/4951996
https://daneshyari.com/

