Theoretical Computer Science ••• (••••) •••-•••

Contents lists available at ScienceDirect

Theoretical Computer Science

TCS:11183

www.elsevier.com/locate/tcs

The entire chromatic number of graphs embedded on the torus with large maximum degree

Xiaoxue Hu^a, Ping Wang^b, Yiqiao Wang^{c,*,1}, Weifan Wang^{a,*,2}

^a Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China

^b Department of Mathematics, Statistics and Computer Science, St. Francis Xavier University, Antigonish, Nova Scotia, Canada

^c School of Management, Beijing University of Chinese Medicine, Beijing 100029, China

A R T I C L E I N F O

Article history: Received 14 December 2015 Received in revised form 18 May 2017 Accepted 22 May 2017 Available online xxxx Communicated by L.M. Kirousis

Keywords: Embedded graph Torus Entire coloring Maximum degree

ABSTRACT

An embedded graph G = (V, E, F) on the torus is entirely k-colorable if $V \cup E \cup F$ can be colored with k colors such that any two adjacent or incident elements receive different colors. In this paper, we prove that every embedded graph G on the torus with maximum degree $\Delta \ge 10$ is entirely $(\Delta + 2)$ -colorable.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Suppose that *G* is a simple graph. An embedding of *G* on a surface *S* is called a 2-*cell embedding* if each face of *G* is homeomorphic to an open unit disc. All embedding graphs considered in this paper are 2-cell embedding. The *Euler characteristic* $\varepsilon(S)$ of a surface *S* is equal to V(G) + F(G) - E(G) for any graph *G* that is 2-cell embedded in *S*. If *S* is the Euclidean plane, then $\varepsilon(S) = 2$; If *S* is the torus, then $\varepsilon(S) = 0$. Given an embedded graph *G*, we denote its vertex set, edge set, face set, maximum degree, and minimum degree by V(G), E(G), F(G), $\Delta(G)$ and $\delta(G)$, respectively. If no ambiguity arises, $\Delta(G)$ is written as Δ . For convenience, a graph embedded on the torus is called a *T*-graph.

An *entire k*-coloring of an embedded graph *G* in a surface is a mapping $\phi : V(G) \cup E(G) \cup F(G) \rightarrow \{1, 2, ..., k\}$ such that any two adjacent or incident elements in $V(G) \cup E(G) \cup F(G)$ receive distinct colors. The *entire chromatic number*, denoted $\chi_{vef}(G)$, of *G* is the smallest integer *k* such that *G* has an entire *k*-coloring.

In 1972, Kronk and Mitchem [4] proved that every plane graph *G* with $\Delta \le 3$ is entirely $(\Delta + 4)$ -colorable, and conjectured that $\chi_{vef}(G) \le \Delta + 4$ for any plane graph *G* with $\Delta \ge 4$. The upper bound $\Delta + 4$ is tight since the complete graph K_4 satisfies $\chi_{vef}(K_4) = 7 = \Delta(K_4) + 4$. This conjecture has been solved completely (it was proved in [2] for $\Delta \ge 7$, in [6] for $\Delta = 6$, in [7] for $\Delta = 4, 5$). For the class of plane graphs of large maximum degree, the upper bound $\Delta + 4$ can be further improved. Wang, Mao and Miao [9] proved that every plane graph *G* with $\Delta \ge 8$ is entirely ($\Delta + 3$)-colorable. It is now known that if *G* is a plane graph with $\Delta \ge 9$, then its entire chromatic number is at most $\Delta + 2$ (this was

http://dx.doi.org/10.1016/j.tcs.2017.05.018 0304-3975/© 2017 Elsevier B.V. All rights reserved.

^{*} Corresponding authors.

E-mail addresses: yqwang@bucm.edu.cn (Y. Wang), wwf@zjnu.cn (W. Wang).

¹ Research supported by NSFC (No. 11671053).

² Research supported by NSFC (No. 11371328).

X. Hu et al. / Theoretical Computer Science ••• (••••) •••-•••

proved in [1] for $\Delta \ge 12$ and in [8] for $9 \le \Delta \le 11$). Note that the upper bound $\Delta + 2$ cannot be further reduced for the class of plane graphs since any tree *T* with $\Delta \ge 2$ can attain this value. However, it is unknown what is the tight upper bound of $\chi_{vef}(G)$ for plane graphs *G* with $4 \le \Delta \le 8$. An easy observation is that for a wheel W_5 of five vertices, we have $\chi_{vef}(W_5) = 7 = \Delta(W_5) + 3$.

Sanders and Maharry [5] investigated the simultaneous colorings of embedded graphs. Among other things, they showed that if *G* is a *T*-graph with $\Delta \ge 51$, then $\chi_{vef}(G) \le \Delta + 2$. Recently, the present four authors proved in [3] that if *G* is a *T*-graph, then $\chi_{vef}(G) \le \Delta + 4$ if $\Delta \ge 6$, and $\chi_{vef}(G) \le \Delta + 5$ if $\Delta \le 5$. The conjecture that every *T*-graph *G* is entirely $(\Delta + 4)$ -colorable, raised in [3], remains open.

In this paper, we will prove the following result:

Theorem 1. If G is a T-graph with $\Delta \ge 10$, then $\chi_{vef}(G) \le \Delta + 2$.

Theorem 1 extends partially the result on the entire coloring of plane graphs in [8], also improves a result in [5] by reducing the value for Δ from 51 to 10.

2. Notations

2

Let *G* be a *T*-graph with $\delta(G) \ge 2$. For a face $f \in F(G)$, we use b(f) to denote the boundary walk of *f* and write $f = [u_1u_2 \cdots u_n]$ if u_1, u_2, \ldots, u_n are the vertices of b(f) in the clockwise order. Repeated occurrences of a vertex are allowed. The degree of a face, denoted d(f), is the number of edge-steps in its boundary walk. Note that each cut-edge is counted twice. For $x \in V(G)$, let d(x) denote the degree of *x* in *G*. A vertex of degree *k* (at most *k*, at least *k*, respectively) is called a *k*-vertex (*k*⁻-vertex, *k*⁺-vertex, respectively). Similarly, we can define *k*-face, *k*⁻-face and *k*⁺-face. For a vertex $v \in V(G)$, let N(v) denote the set of neighbors of *v* in *G*. When *v* is a *k*-vertex, we say that there are *k* faces incident to *v*. However, these faces are not required to be distinct, i.e., *v* may have repeated occurrences on the boundary walk of some of its incident faces. We say that *v* is a (a_1, a_2, \ldots, a_k) -vertex if it is incident to *k* distinct faces f_1, f_2, \ldots, f_k in the clockwise order with $d(f_i) = a_i$ for $i = 1, 2, \ldots, k$. For $x \in V(G) \cup F(G)$ and $i \ge 1$, let $n_i(x)$ (or $m_i(x)$) denote the number of *i*-vertices (or *i*-faces) adjacent or incident to *x*.

A vertex v is weak if d(v) = 4 and $m_3(v) \ge 1$, or if d(v) = 5 and $m_3(v) \ge 4$. A 4-face f is weak if $n_2(f) + n_3(f) + m_3(f) \ge 1$. A 5⁺-face f is weak if $2n_2(f) + n_3(f) + m_3(f) + m_4^w(f) \ge 3d(f) - 11$, where $m_4^w(f)$ is the number of weak 4-faces adjacent to f. A 2-vertex is bad if it is incident to a 4-face, and good otherwise. Let $n_2^b(f)$ denote the number of bad 2-vertices incident to face f.

For an edge $e = xy \in E(G)$, let t(e) denote the number of 3-faces incident to e; q(e) denote the total number of 3-faces and weak 4⁺-faces incident to e; and p(e) denote the total number of 3⁻-vertices, weak 4-vertices and weak 5-vertices incident to e. Note that $p(e) \le 2$ and $t(e) \le q(e) \le 2$. If $p(e) \ge 1$, $q(e) \ge 1$ and $d(x) + d(y) - p(e) - q(e) \le \Delta - 1$, then e is called a *light edge*.

Given a face $f \in F(G)$, let $E^*(f) = \{xy \in b(f) \mid d(x) + d(y) \le \Delta \text{ and } \min\{d(x), d(y)\} \le 3\}$, and $\rho^*(f) = 3d(f) - 2n_2(f) - n_3(f) - m_4^m(f) - |E^*(f)|$. If $|E^*(f)| \ge 1$ and $\rho^*(f) \le 11$, then f is called a *light face*.

3. A structural lemma

This section is devoted to establish the following structural lemma, which is fundamentally applied to the proof of Theorem 1 in the next section.

Lemma 1. Let *G* be a connected *T*-graph with $\Delta \ge 10$ and $\delta(G) \ge 2$. Then *G* contains one of the following configurations (C6) to (C6):

- (C1) a 2-vertex adjacent to two other 2-vertices;
- (C2) a 2-vertex lying on a 3-face;
- (C3) a 2-vertex lying on two weak faces, one of which is of degree 4;
- (C4) $a(3, 4^-, 4^-)$ -vertex;
- (C5) a light edge;
- (C6) a light face.

Proof. Assume to the contrary that the lemma is false and *G* is a counterexample. That is, *G* is a connected *T*-graph with $\Delta \ge 10$ and $\delta(G) \ge 2$ and containing none of the configurations (C1)–(C6). Since *G* contains no (C5), Claim 1 below holds automatically.

Claim 1. Let $xy \in E(G)$ with $p(xy), q(xy) \ge 1$.

(1) If d(x) = 2, then $d(y) = \Delta$. (2) Let d(x) = 3. If q(xy) = 1, then $d(y) \ge \Delta - 1$; If q(xy) = 2, then $d(y) = \Delta$.

Please cite this article in press as: X. Hu et al., The entire chromatic number of graphs embedded on the torus with large maximum degree, Theoret. Comput. Sci. (2017), http://dx.doi.org/10.1016/j.tcs.2017.05.018

Download English Version:

https://daneshyari.com/en/article/4952009

Download Persian Version:

https://daneshyari.com/article/4952009

Daneshyari.com