[Theoretical Computer Science](http://dx.doi.org/10.1016/j.tcs.2017.05.018) ••• (••••) •••-•••

Contents lists available at [ScienceDirect](http://www.ScienceDirect.com/)

Theoretical Computer Science

TCS:11183

www.elsevier.com/locate/tcs

The entire chromatic number of graphs embedded on the torus with large maximum degree

Xiaoxue Hu a, Ping Wang b, Yiqiao Wang ^c*,*∗*,*1, Weifan Wang ^a*,*∗*,*²

^a *Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China*

^b *Department of Mathematics, Statistics and Computer Science, St. Francis Xavier University, Antigonish, Nova Scotia, Canada*

^c *School of Management, Beijing University of Chinese Medicine, Beijing 100029, China*

A R T I C L E I N F O A B S T R A C T

Article history: Received 14 December 2015 Received in revised form 18 May 2017 Accepted 22 May 2017 Available online xxxx Communicated by L.M. Kirousis

Keywords: Embedded graph Torus Entire coloring Maximum degree

An embedded graph $G = (V, E, F)$ on the torus is entirely *k*-colorable if $V \cup E \cup F$ can be colored with *k* colors such that any two adjacent or incident elements receive different colors. In this paper, we prove that every embedded graph *G* on the torus with maximum degree $\Delta \geq 10$ is entirely $(\Delta + 2)$ -colorable.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Suppose that *G* is a simple graph. An embedding of *G* on a surface *S* is called a 2*-cell embedding* if each face of *G* is homeomorphic to an open unit disc. All embedding graphs considered in this paper are 2-cell embedding. The *Euler characteristic* $\varepsilon(S)$ of a surface S is equal to $V(G) + F(G) - E(G)$ for any graph G that is 2-cell embedded in S. If S is the Euclidean plane, then $\varepsilon(S) = 2$; If *S* is the torus, then $\varepsilon(S) = 0$. Given an embedded graph *G*, we denote its vertex set, edge set, face set, maximum degree, and minimum degree by $V(G)$, $E(G)$, $F(G)$, $\Delta(G)$ and $\delta(G)$, respectively. If no ambiguity arises, $\Delta(G)$ is written as Δ . For convenience, a graph embedded on the torus is called a T-graph.

An entire k-coloring of an embedded graph G in a surface is a mapping $\phi: V(G) \cup E(G) \cup F(G) \rightarrow \{1, 2, ..., k\}$ such that any two adjacent or incident elements in $V(G) \cup E(G) \cup F(G)$ receive distinct colors. The entire chromatic number, denoted *χvef (G)*, of *G* is the smallest integer *k* such that *G* has an entire *k*-coloring.

In 1972, Kronk and Mitchem [\[4\]](#page--1-0) proved that every plane graph *G* with $\Delta \leq 3$ is entirely $(\Delta + 4)$ -colorable, and conjectured that $\chi_{vef}(G) \leq \Delta + 4$ for any plane graph *G* with $\Delta \geq 4$. The upper bound $\Delta + 4$ is tight since the complete graph K_4 satisfies $\chi_{vef}(K_4) = 7 = \Delta(K_4) + 4$. This conjecture has been solved completely (it was proved in [\[2\]](#page--1-0) for $\Delta \geq 7$, in [\[6\]](#page--1-0) for $\Delta = 6$, in [\[7\]](#page--1-0) for $\Delta = 4, 5$). For the class of plane graphs of large maximum degree, the upper bound $\Delta + 4$ can be further improved. Wang, Mao and Miao [\[9\]](#page--1-0) proved that every plane graph *G* with $\Delta \geq 8$ is entirely $(\Delta + 3)$ -colorable. It is now known that if *G* is a plane graph with $\Delta \geq 9$, then its entire chromatic number is at most $\Delta + 2$ (this was

<http://dx.doi.org/10.1016/j.tcs.2017.05.018> 0304-3975/© 2017 Elsevier B.V. All rights reserved.

Corresponding authors.

E-mail addresses: yqwang@bucm.edu.cn (Y. Wang), wwf@zjnu.cn (W. Wang).

¹ Research supported by NSFC (No. 11671053).

² Research supported by NSFC (No. 11371328).

TCS:11183

proved in [\[1\]](#page--1-0) for $\Delta \ge 12$ and in [\[8\]](#page--1-0) for $9 \le \Delta \le 11$). Note that the upper bound $\Delta + 2$ cannot be further reduced for the class of plane graphs since any tree *T* with $\Delta \geq 2$ can attain this value. However, it is unknown what is the tight upper bound of $\chi_{vef}(G)$ for plane graphs *G* with $4 \leq \Delta \leq 8$. An easy observation is that for a wheel W_5 of five vertices, we have $\chi_{vef}(W_5) = 7 = \Delta(W_5) + 3.$

Sanders and Maharry [\[5\]](#page--1-0) investigated the simultaneous colorings of embedded graphs. Among other things, they showed that if *G* is a *T*-graph with $\Delta \ge 51$, then $\chi_{vef}(G) \le \Delta + 2$. Recently, the present four authors proved in [\[3\]](#page--1-0) that if *G* is a T-graph, then $\chi_{vef}(G)\leq \Delta+4$ if $\Delta\geq 6$, and $\chi_{vef}(G)\leq \Delta+5$ if $\Delta\leq 5$. The conjecture that every T-graph G is entirely $(\Delta + 4)$ -colorable, raised in [\[3\],](#page--1-0) remains open.

In this paper, we will prove the following result:

Theorem 1. If G is a T-graph with $\Delta \geq 10$, then $\chi_{vef}(G) \leq \Delta + 2$.

Theorem 1 extends partially the result on the entire coloring of plane graphs in $[8]$, also improves a result in $[5]$ by reducing the value for Δ from 51 to 10.

2. Notations

Let *G* be a *T*-graph with $\delta(G) \geq 2$. For a face $f \in F(G)$, we use $b(f)$ to denote the boundary walk of *f* and write $f = [u_1u_2 \cdots u_n]$ if u_1, u_2, \ldots, u_n are the vertices of $b(f)$ in the clockwise order. Repeated occurrences of a vertex are allowed. The degree of a face, denoted $d(f)$, is the number of edge-steps in its boundary walk. Note that each cut-edge is counted twice. For $x \in V(G)$, let $d(x)$ denote the degree of x in G. A vertex of degree k (at most k, at least k, respectively) is called a *k*-vertex (*k*−-vertex, *k*+-vertex, respectively). Similarly, we can define *k*-face, *k*−-face and *k*+-face. For a vertex $v \in V(G)$, let $N(v)$ denote the set of neighbors of v in G. When v is a k-vertex, we say that there are k faces incident to v. However, these faces are not required to be distinct, i.e., *v* may have repeated occurrences on the boundary walk of some of its incident faces. We say that v is a $(a_1, a_2, ..., a_k)$ -vertex if it is incident to k distinct faces $f_1, f_2, ..., f_k$ in the clockwise order with $d(f_i) = a_i$ for $i = 1, 2, ..., k$. For $x \in V(G) \cup F(G)$ and $i > 1$, let $n_i(x)$ (or $m_i(x)$) denote the number of *i*-vertices (or *i*-faces) adjacent or incident to *x*.

A vertex v is weak if $d(v) = 4$ and $m_3(v) \ge 1$, or if $d(v) = 5$ and $m_3(v) \ge 4$. A 4-face f is weak if $n_2(f) + n_3(f) +$ $m_3(f) \ge 1$. A 5⁺-face f is weak if $2n_2(f) + n_3(f) + m_3(f) + m_4^w(f) \ge 3d(f) - 11$, where $m_4^w(f)$ is the number of weak 4-faces adjacent to f. A 2-vertex is *bad* if it is incident to a 4-face, and *good* otherwise. Let $n_2^b(f)$ denote the number of bad 2-vertices incident to face *f* .

For an edge $e = xy \in E(G)$, let $t(e)$ denote the number of 3-faces incident to *e*; $q(e)$ denote the total number of 3-faces and weak 4+-faces incident to *e*; and *p(e)* denote the total number of 3−-vertices, weak 4-vertices and weak 5-vertices incident to e. Note that $p(e) \le 2$ and $t(e) \le q(e) \le 2$. If $p(e) \ge 1$, $q(e) \ge 1$ and $d(x) + d(y) - p(e) - q(e) \le \Delta - 1$, then e is called a *light edge*.

Given a face $f \in F(G)$, let $E^*(f) = \{ xy \in b(f) \mid d(x) + d(y) \leq \Delta \}$ and $min\{ d(x), d(y) \} \leq 3$, and $\rho^*(f) = 3d(f) - 2n_2(f) - 3d(f)$ $n_3(f) - m_3(f) - m_4^w(f) - |E^*(f)|$. If $|E^*(f)| \ge 1$ and $\rho^*(f) \le 11$, then f is called a light face.

3. A structural lemma

This section is devoted to establish the following structural lemma, which is fundamentally applied to the proof of Theorem 1 in the next section.

Lemma 1. Let G be a connected T-graph with $\Delta \ge 10$ and $\delta(G) \ge 2$. Then G contains one of the following configurations (C6) to (C6):

- (C1) *a* 2*-vertex adjacent to two other* 2*-vertices;*
- (C2) *a* 2*-vertex lying on a* 3*-face;*
- (C3) *a* 2*-vertex lying on two weak faces, one of which is of degree* 4*;*
- (C4) *a (*3*,* 4−*,* 4−*)-vertex;*
- (C5) *a light edge;*
- (C6) *a light face.*

Proof. Assume to the contrary that the lemma is false and *G* is a counterexample. That is, *G* is a connected *T* -graph with $\Delta \geq 10$ and $\delta(G) \geq 2$ and containing none of the configurations (C1)–(C6). Since *G* contains no (C5), Claim 1 below holds automatically.

Claim 1. *Let* $xy \in E(G)$ *with* $p(xy)$, $q(xy) > 1$.

(1) *If* $d(x) = 2$ *, then* $d(y) = \Delta$ *.* (2) Let $d(x) = 3$. If $q(xy) = 1$, then $d(y) \ge \Delta - 1$; If $q(xy) = 2$, then $d(y) = \Delta$.

Please cite this article in press as: X. Hu et al., The entire chromatic number of graphs embedded on the torus with large maximum degree, Theoret. Comput. Sci. (2017), http://dx.doi.org/10.1016/j.tcs.2017.05.018

Download English Version:

<https://daneshyari.com/en/article/4952009>

Download Persian Version:

<https://daneshyari.com/article/4952009>

[Daneshyari.com](https://daneshyari.com)