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colors. In this paper, we prove that every embedded graph G on the torus with maximum
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1. Introduction

Suppose that G is a simple graph. An embedding of G on a surface S is called a 2-cell embedding if each face of G
is homeomorphic to an open unit disc. All embedding graphs considered in this paper are 2-cell embedding. The Euler
characteristic £(S) of a surface S is equal to V(G) + F(G) — E(G) for any graph G that is 2-cell embedded in S. If S is the
Euclidean plane, then &(S) =2; If S is the torus, then £(S) = 0. Given an embedded graph G, we denote its vertex set, edge
set, face set, maximum degree, and minimum degree by V (G), E(G), F(G), A(G) and §(G), respectively. If no ambiguity
arises, A(G) is written as A. For convenience, a graph embedded on the torus is called a T-graph.

An entire k-coloring of an embedded graph G in a surface is a mapping ¢ : V(G) U E(G) U F(G) — {1, 2, ..., k} such that
any two adjacent or incident elements in V(G) U E(G) U F(G) receive distinct colors. The entire chromatic number, denoted
Xvef (G), of G is the smallest integer k such that G has an entire k-coloring.

In 1972, Kronk and Mitchem [4] proved that every plane graph G with A <3 is entirely (A + 4)-colorable, and con-
jectured that xyef(G) < A + 4 for any plane graph G with A > 4. The upper bound A + 4 is tight since the complete
graph Ky satisfies xyef(K4) =7 = A(K4) + 4. This conjecture has been solved completely (it was proved in [2] for A > 7,
in [6] for A =6, in [7] for A =4,5). For the class of plane graphs of large maximum degree, the upper bound A + 4 can
be further improved. Wang, Mao and Miao [9] proved that every plane graph G with A > 8 is entirely (A + 3)-colorable.
It is now known that if G is a plane graph with A > 9, then its entire chromatic number is at most A + 2 (this was
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proved in [1] for A > 12 and in [8] for 9 < A < 11). Note that the upper bound A + 2 cannot be further reduced for the
class of plane graphs since any tree T with A > 2 can attain this value. However, it is unknown what is the tight upper
bound of xyef(G) for plane graphs G with 4 < A < 8. An easy observation is that for a wheel Ws of five vertices, we have
Xvef (Ws) =7 = A(Ws) + 3.

Sanders and Maharry [5] investigated the simultaneous colorings of embedded graphs. Among other things, they showed
that if G is a T-graph with A > 51, then xyf(G) < A + 2. Recently, the present four authors proved in [3] that if G is a
T-graph, then xyef(G) < A+4if A>6, and xyef(G) < A+5 if A <5. The conjecture that every T-graph G is entirely
(A 4 4)-colorable, raised in [3], remains open.

In this paper, we will prove the following result:

Theorem 1.If G is a T-graph with A > 10, then xyer(G) < A + 2.

Theorem 1 extends partially the result on the entire coloring of plane graphs in [8], also improves a result in [5] by
reducing the value for A from 51 to 10.

2. Notations

Let G be a T-graph with §(G) > 2. For a face f € F(G), we use b(f) to denote the boundary walk of f and write
f =[uquy---uy] if uq,uy,...,u, are the vertices of b(f) in the clockwise order. Repeated occurrences of a vertex are
allowed. The degree of a face, denoted d(f), is the number of edge-steps in its boundary walk. Note that each cut-edge is
counted twice. For x € V(G), let d(x) denote the degree of x in G. A vertex of degree k (at most k, at least k, respectively)
is called a k-vertex (k~-vertex, k™-vertex, respectively). Similarly, we can define k-face, k~-face and k*-face. For a vertex
v € V(G), let N(v) denote the set of neighbors of v in G. When v is a k-vertex, we say that there are k faces incident to v.
However, these faces are not required to be distinct, i.e., v may have repeated occurrences on the boundary walk of some of
its incident faces. We say that v is a (ay, ay, ..., ag)-vertex if it is incident to k distinct faces f1, fa,..., fr in the clockwise
order with d(f;) =a; fori=1,2,...,k. For x€ V(G) U F(G) and i > 1, let n;(x) (or m;(x)) denote the number of i-vertices
(or i-faces) adjacent or incident to x.

A vertex v is weak if d(v) =4 and m3(v) > 1, or if d(v) =5 and m3(v) > 4. A 4-face f is weak if ny(f) +n3(f) +
m3(f) > 1. A 5T-face f is weak if 2n,(f) + n3(f) + ms(f) +my (f) = 3d(f) — 11, where my/(f) is the number of weak
4-faces adjacent to f. A 2-vertex is bad if it is incident to a 4-face, and good otherwise. Let ng( f) denote the number of bad
2-vertices incident to face f.

For an edge e =xy € E(G), let t(e) denote the number of 3-faces incident to e; g(e) denote the total number of 3-faces
and weak 4% -faces incident to e; and p(e) denote the total number of 3~ -vertices, weak 4-vertices and weak 5-vertices
incident to e. Note that p(e) <2 and t(e) <q(e) <2.If p(e) >1, qe) > 1 and d(x) +d(y) — p(e) —q(e) < A — 1, then e is
called a light edge.

Given a face f € F(G), let E*(f) ={xy € b(f) | d(x) +d(y) < A and min{d(x),d(y)} <3}, and p*(f) =3d(f) —2ny(f) —
n3(f) —ms(f) —my (f) — [E*(f)|. If [E*(f)]| =1 and p*(f) <11, then f is called a light face.

3. Astructural lemma

This section is devoted to establish the following structural lemma, which is fundamentally applied to the proof of
Theorem 1 in the next section.

Lemma 1. Let G be a connected T-graph with A > 10 and §(G) > 2. Then G contains one of the following configurations (C6) to (C6):

(C1) a 2-vertex adjacent to two other 2-vertices;

(C2) a 2-vertex lying on a 3-face;

(C3) a 2-vertex lying on two weak faces, one of which is of degree 4;
(C4) a (3,47 ,47)-vertex;

(C5) a light edge;

(C6) a light face.

Proof. Assume to the contrary that the lemma is false and G is a counterexample. That is, G is a connected T-graph with

A >10 and §(G) > 2 and containing none of the configurations (C1)-(C6). Since G contains no (C5), Claim 1 below holds
automatically.

Claim 1. Let xy € E(G) with p(xy), q(xy) > 1.

(1) Ifd(x) =2, thend(y) = A.
(2) Letd(x) =3.Ifq(xy) =1, thend(y) > A — 1; Ifq(xy) = 2, thend(y) = A.
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