
JID:TCS AID:10376 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.159; Prn:13/08/2015; 8:25] P.1 (1-28)

Theoretical Computer Science ••• (••••) •••–•••

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

On probabilistic snap-stabilization ✩

Karine Altisen a,b, Stéphane Devismes a,b,∗
a Univ. Grenoble Alpes, VERIMAG, F-38000 Grenoble, France
b CNRS, VERIMAG, F-38000 Grenoble, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 21 March 2014
Received in revised form 27 July 2015
Accepted 2 August 2015
Available online xxxx

Keywords:
Snap-stabilization
Probabilistic algorithms
Leader election

In this paper, we introduce probabilistic snap-stabilization. We relax the definition of 
deterministic snap-stabilization without compromising its safety guarantees. In an unsafe 
environment, a probabilistically snap-stabilizing algorithm satisfies its safety property 
immediately after the last fault; whereas its liveness property is only ensured with 
probability 1.
We show that probabilistic snap-stabilization is more expressive than its deterministic 
counterpart. Indeed, we propose two probabilistic snap-stabilizing algorithms for a problem 
having no deterministic snap- or self-stabilizing solution: guaranteed service leader election
in arbitrary anonymous networks. This problem consists in computing a correct answer to 
each process that initiates the question “Am I the leader of the network?,” i.e., (1) processes 
always compute the same answer to that question and (2) exactly one process computes 
the answer true.
Our solutions being probabilistically snap-stabilizing, the answers are only delivered within 
an almost surely finite time; however any delivered answer is correct, regardless the 
arbitrary initial configuration and provided the question has been properly started.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Self-stabilization [2] is a versatile technique to withstand any transient fault in a distributed system: a self-stabilizing 
algorithm is able to recover, i.e., reach a legitimate configuration, in finite time, regardless the arbitrary initial configuration 
of the system, and therefore also after the occurrence of transient faults. Thus, self-stabilization makes no hypotheses on 
the nature or extent of transient faults that could hit the system, and recovers from the effects of those faults in a unified 
manner. Such versatility comes at a price. After transient faults, there is a finite period of time, called the stabilization phase, 
before the system returns to a legitimate configuration. During this phase, there is no safety guarantee at all. In addition, 
a process cannot locally detect whether the system is actually in a legitimate configuration. Moreover, self-stabilizing algo-
rithms may require a large amount of resources, e.g., extra memory is usually required to crosscheck inconsistencies. Finally, 
symmetries occurring in the initial configuration could cause a problem to be impossible to solve, e.g., leader election [3]
and token passing [4] have no deterministic self-stabilizing solutions in anonymous networks. To cope with those issues, 
two categories of variants of self-stabilization have been introduced: weakened and strengthened forms of self-stabilization.

✩ A preliminary version of this work has been published in ICDCN’2014 [1].

* Corresponding author.
E-mail addresses: Karine.Altisen@imag.fr (K. Altisen), Stephane.Devismes@imag.fr (S. Devismes).

http://dx.doi.org/10.1016/j.tcs.2015.08.001
0304-3975/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2015.08.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:Karine.Altisen@imag.fr
mailto:Stephane.Devismes@imag.fr
http://dx.doi.org/10.1016/j.tcs.2015.08.001


JID:TCS AID:10376 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.159; Prn:13/08/2015; 8:25] P.2 (1-28)

2 K. Altisen, S. Devismes / Theoretical Computer Science ••• (••••) •••–•••

1.1. Related work

Weakened forms of self-stabilization have been introduced to cope with impossibility results, reduce the stabilization 
time, or limit the resource consumption. Weak stabilization [5] stipulates that starting from any initial configuration, there 
exists a run that eventually reaches a legitimate configuration. Unlike for self-stabilization, token passing and leader election 
have weak stabilizing solutions in anonymous networks [6]. k-Stabilization [7] prohibits some of the configurations from 
being initial, as an initial configuration may only be the result of at most k faults. There are k-stabilizing token passing 
algorithms that guarantee small convergence time depending only on k [7]. Probabilistic self-stabilization [8] weakens the 
convergence property: starting from any initial configuration, the system converges to a legitimate configuration with prob-
ability 1. Problems such as token passing and leader election in anonymous networks have probabilistic self-stabilizing 
solutions [8,9].

Strengthened forms of self-stabilization have been mainly introduced to offer stringent safety guarantees. A fault contain-
ing self-stabilizing algorithm [10] ensures that when few faults hit the system, the faults are both spatially and temporally 
contained. “Spatially” means that if only few faults occur, those faults cannot be propagated further than a preset radius 
around the corrupted nodes. “Temporally” means quick stabilization when few faults occur. A superstabilizing algorithm [11]
is self-stabilizing and has two additional properties. In presence of single topological change, it recovers fast, and a safety 
predicate, called a passage predicate, should be satisfied along the stabilization. Finally, (deterministic) snap-stabilization [12]
offers strong safety guarantees: regardless of the configuration to which transient failures drive the system, after the failures 
stop, a snap-stabilizing system immediately resumes correct behavior. Precisely, a snap-stabilizing algorithm guarantees 
that any computation started after the faults will operate correctly. However, we have no guarantees for those executed 
all or a part during faults. Actually, snap-stabilization is often used to offer user-centric guarantees: the problems con-
sidered consist of executing finite tasks called services: a service is started by some initiating process and terminates by 
providing a result to that initiator. The goal is to ensure that, starting from any configuration, a service eventually starts 
if requested by some process; and every started service is computed correctly. We call those problems guaranteed service 
problems.

1.2. Contribution

We introduce a new property called probabilistic snap-stabilization, a probabilistic variant of (deterministic) snap-
stabilization. Just as for the probabilistic extension of self-stabilization, we choose to adopt a “Las Vegas” approach and 
relax the definition of snap-stabilization without altering its safety guarantees. (We will also investigate an alternative defi-
nition following the Monte Carlo approach.) Considering a specification as the conjunction of safety and liveness properties, 
a probabilistically snap-stabilizing algorithm immediately satisfies the safety property at the end of the faults, whereas the 
liveness property is ensured with probability 1.

We show that probabilistic snap-stabilization is strictly more expressive than its deterministic counterpart, as we give 
two probabilistic snap-stabilizing algorithms for a problem having no deterministic self- or snap-stabilizing solution: guar-
anteed service leader election in anonymous networks. This problem consists in computing a correct answer to each process 
that initiates the question “Am I the leader of the network ?”, i.e., (1) processes always compute the same answer to 
that question and (2) exactly one process computes the answer true. Our solutions being probabilistically snap-stabilizing, 
the answers are delivered within an almost surely finite time; however, any delivered answer is correct, regardless of the 
arbitrary initial configuration and provided that the question has been properly started.

Our two algorithms work in the locally shared memory model. The first solution, SGSLE , assumes a synchronous dae-
mon. The second, AGSLE , assumes an unfair (distributed) daemon, the most general daemon of the model. Both algorithms 
need an additional assumption1: the knowledge of a bound B such that B < n ≤ 2B , where n is the number of processes. 
The memory requirement of both algorithms is in O (log n) bits per process. The expected delay, response, and service times 
of SGSLE are each O (n) rounds, while these times are O (n2) rounds for AGSLE . If we add the assumption that processes 
know an upper bound, D , on the diameter of the network, the expected time complexity of SGSLE (resp. AGSLE ) can be 
made O (D) rounds (resp. O (D.n) rounds).

1.3. Roadmap

In the next section we define the computational model. In Section 3, we introduce probabilistic snap-stabilization. In 
Section 4, we formally define the guaranteed service problems, and give one example, namely guaranteed service leader 
election. In Section 5, we propose SGSLE , our probabilistic snap-stabilizing algorithm for synchronous anonymous systems. 
In Section 6, we propose AGSLE , our probabilistic snap-stabilizing algorithm for asynchronous anonymous systems. In 
Section 7, we investigate an alternative definition of the probabilistic snap-stabilization following the Monte Carlo approach. 
We also discuss how to adapt our algorithm to efficiently achieve this variant. We conclude in Section 8.

1 We otherwise prove that our problem is unsolvable.



Download	English	Version:

https://daneshyari.com/en/article/4952022

Download	Persian	Version:

https://daneshyari.com/article/4952022

Daneshyari.com

https://daneshyari.com/en/article/4952022
https://daneshyari.com/article/4952022
https://daneshyari.com/

