
JID:TCS AID:10589 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.172; Prn:26/01/2016; 19:18] P.1 (1-9)

Theoretical Computer Science ••• (••••) •••–•••

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Fast rendezvous on a cycle by agents with different speeds

Ofer Feinerman a, Amos Korman b, Shay Kutten c, Yoav Rodeh d

a Weizmann Institute of Science, Rehovot, Israel
b CNRS and University Paris Diderot, Paris, France
c The Technion, Haifa, Israel
d Jerusalem College of Engineering, Jerusalem, Israel

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 April 2014
Received in revised form 28 September 
2015
Accepted 24 December 2015
Available online xxxx

Keywords:
Rendezvous
Asynchrony
Heterogeneity
Speed
Cycle
Pebble
White board
Mobile agents

The difference between the speed of the actions of different processes is typically 
considered as an obstacle that makes the achievement of cooperative goals more difficult. 
In this work, we aim to highlight potential benefits of such asynchrony phenomena to tasks 
involving symmetry breaking. Specifically, in this paper, identical (except for their speeds) 
mobile agents are placed at arbitrary locations on a (continuous) cycle of length n and use 
their speed difference in order to rendezvous fast. We normalize the speed of the slower 
agent to be 1, and fix the speed of the faster agent to be some c > 1. (An agent does not 
know whether it is the slower agent or the faster one.) The straightforward distributed-race 
(DR) algorithm is the one in which both agents simply start walking until rendezvous is 
achieved. It is easy to show that, in the worst case, the rendezvous time of DR is n/(c − 1). 
Note that in the interesting case, where c is very close to 1 (e.g., c = 1 + 1/nk), this bound 
becomes huge. Our first result is a lower bound showing that, up to a multiplicative factor 
of 2, this bound is unavoidable, even in a model that allows agents to leave arbitrary marks 
(the white board model), even assuming sense of direction, and even assuming n and c are 
known to agents. That is, we show that under such assumptions, the rendezvous time of 
any algorithm is at least n

2(c−1)
if c ≤ 3 and slightly larger (specifically, n

c+1 ) if c > 3. We 
then manage to construct an algorithm that precisely matches the lower bound for the 
case c ≤ 2, and almost matches it when c > 2. Moreover, our algorithm performs under 
weaker assumptions than those stated above, as it does not assume sense of direction, and 
it allows agents to leave only a single mark (a pebble) and only at the place where they 
start the execution. Finally, we investigate the setting in which no marks can be used at 
all, and show tight bounds for c ≤ 2, and almost tight bounds for c > 2.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Background and motivation

The difference between the speed of the actions of different entities is typically considered disruptive in real computing 
systems. In this paper, we illustrate some advantages of such phenomena in cases where the difference remains fixed
throughout the execution.1 We demonstrate the usefulness of this manifestation of asynchrony to tasks involving symmetry 

E-mail address: kutten@ie.technion.ac.il (S. Kutten).
1 Advantages can also be exploited in cases where the difference in speed follows some stochastic distribution, however, in this initial study, we focus 

on the simpler fully deterministic case. That is, we assume a speed heterogeneity that is arbitrary but fixed throughout the execution.
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breaking. More specifically, we show how two mobile agents, identical in every aspect save their speed, can lever their 
speed difference in order to achieve fast rendezvous.

Symmetry breaking is a major issue in distributed computing that is completely absent from traditional sequential com-
puting. Symmetry can often prevent different processes from reaching a common goal. Well known examples include leader 
election [1], mutual exclusion [2], agreement [3,4] and renaming [5]. To address this issue, various differences between 
processes are exploited. For example, solutions for leader election often rely on unique identifiers assumed to be associated 
with each entity (e.g., a process) [1]. Another example of a difference is the location of the entities in a network graph. 
Entities located in different parts of a non-symmetric graph can use this knowledge in order to behave differently; in such a 
case, a leader can be elected even without using unique identifiers [6]. If no differences exist, breaking symmetry determin-
istically becomes impossible (see, e.g., [1,7]) and one must resort to randomized algorithms, assuming that different entities 
can draw different random bits [8].

We consider mobile agents aiming to rendezvous. See, e.g., [9–14,7]. As is the case with other symmetry breaking prob-
lems, it is well known that if the agents are completely identical then rendezvous is, in some cases, impossible. In fact, a 
large portion of the research about rendezvous dealt with identifying the conditions under which rendezvous was possi-
ble, as a result of some asymmetries. Here, the fact that agents have different speeds implies that the mere feasibility of 
rendezvous is trivial, and our main concern is therefore the time complexity, that is, the time to reach a rendezvous. More 
specifically, we study the case where the agents are identical except for the fact that they have different speeds of motion. 
Moreover, to isolate the issue of the speed difference, we remove other possible differences between the agents. That is, the 
agents are assumed to be anonymous. To avoid solutions of the kind of [6], that are based on the underlying graph being 
asymmetric, we consider a symmetric topological object, that is, specifically, a cycle topology. We denote by n the length of 
the cycle.

1.2. The model and the problem

The problem of rendezvous on a cycle Consider two identical deterministic agents placed on a cycle of length n (in some 
distance units). To ease the description, we name these agents A and B but these names are not known to the agents. Each 
agent is initially placed in some location on the cycle by an adversary and both agents start the execution of the algorithm 
simultaneously. An agent can move on the cycle at any direction. Specifically, at any given point in time, an agent can decide 
to either start moving, continue in the same direction, stop, or change its direction. The agents’ goal is to rendezvous, namely, 
to get to be co-located somewhere on the cycle.2 We consider continuous movement, so this rendezvous can occur at any 
location along the cycle. An agent can detect the presence of another agent at its location and hence detect a rendezvous. 
When agents detect a rendezvous, the rendezvous task is considered completed.

Orientation issues We distinguish between two models based on orientation. The first assumes that agents have the sense 
of direction [16], that is, we assume that the agents can distinguish clockwise from the anti-clockwise. In the second model, 
we do not assume this orientation assumption. Instead, each agent has its own perception of which direction is clockwise 
and which is anti-clockwise, but there is no guarantee that these perceptions are globally consistent. (Hence, e.g., in this 
model, if both agents start walking in their own clockwise direction, they may happen to walk in opposite directions, i.e., 
towards each other).

The pebble and the white board models Although the agents do not hold any direct means of communication, in some cases, 
we do assume that an agent can leave marks in its current location on the cycle, to be read later by itself and by the other 
agent. In the pebble model, an agent can mark its location by dropping a pebble [17,18]. Both dropping and detecting a 
pebble are local acts taking place only on the location occupied by the agent. We note that in the case where pebbles can 
be dropped, our upper bound employs agents that drop a pebble only once and only at their initial location [19,20,14]. On 
the other hand, our corresponding lower bound holds for any mechanism of (local) pebble dropping. Moreover, this lower 
bound holds also for the seemingly stronger ’white board model, in which an agent can change a memory associated with 
its current location such that it could later be read and further manipulated by itself or the other agent [9,21,22].

Speed Each agent moves at the same fixed speed at all times; the speed of an agent A, denoted s(A), is the inverse of the 
time tα it takes agent A to traverse one unit of length. For agent B , the time tβ and speed s(B) are defined analogously. 
Without loss of generality, we assume that agent A is faster, i.e., s(A) > s(B) but emphasize that this is unknown to the 
agents themselves. Furthermore, for simplicity of presentation, we normalize the speed of the slower agent B to one, that 
is, s(B) = 1 and denote s(A) = c where c > 1. We stress that the more interesting cases are when c is a function of n and 
arbitrarily close to 1 (e.g., c = 1 + 1/nk , for some constant k). We assume that each agent has a pedometer that enables it 
to measure the distance it travels.

2 In a sense, this rendezvous problem is also similar to the cow-path problem, see, e.g., [15]. Here, the agents (the cow and the treasure she seeks to 
find) are both mobile (in the cow-path problem only one agent, namely, the cow, is mobile). It was shown in [15] that if the cow is initially located at 
distance D from the treasure on the infinite line then the time to find the treasure can be 9D , and that 9 is the best multiplicative constant (up to lower 
order terms in D).
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