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In this work we introduce the operation of prefix–suffix square reduction as the inverse of 
the prefix–suffix duplication studied in the literature. This operation reduces all possible 
squares that are prefixes or suffixes of a word to one half of these squares. Two variants 
are considered, depending on the unbounded and bounded length of the removed prefix 
or suffix. We investigate the complexity of the (non-uniform) membership problem for 
the prefix–suffix square reduction of a given language and the closure properties of some 
classes of languages under these operations as well as under their iterated variants. 
Afterwards, we define the primitive prefix–suffix square root of a word w as a word x that 
can be obtained from w by iterated prefix–suffix square reductions and it is irreducible 
in turn, i.e., no further prefix or suffix square reduction can be applied. We prove that 
the language of primitive prefix–suffix square roots of all words over an alphabet is never 
regular for alphabets with at least two symbols in the unbounded case, and always regular 
in the bounded case. The paper ends with a brief discussion on some open problems and 
some algorithmic aspects.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

One of the most frequent and vividly investigated phenomena in different contexts is that of repetitive structures. In 
genetics, for instance, one of the less understood mutations among the genome rearrangements is the duplication of a seg-
ment of a chromosome [18]. In the process of duplication, a stretch of DNA is duplicated, yielding two or more adjacent 
copies, also called tandem repeats. It is commonly asserted that approximately 5% of the genome is involved in duplications 
and the distribution of these tandem repeats varies widely along the chromosomes [23]. An interesting property of tandem 
repeats is to make a so-called “phylogenetic analysis” possible, which might be useful in the investigation of the evolution 
of species by determining the most likely duplication history [25]. The detection of these tandem repeats, as well as algo-
rithms for tandem repeats reconstructing history, have received a great deal of attention in bioinformatics [2,3,22]. Thus, 
duplicating factors and reducing squares to one of their halves is an interesting algorithmic problem with some motivation 
from bioinformatics. Reductions of squares seems to be of importance in data compression, where the compressed words 
have to contain some information that allows the reconstruction of the original word [10,11].

Treating chromosomes and genomes as languages opens the possibility that the structural information contained in 
biological sequences can be generalized and investigated by formal language theory methods [21]. Thus, the interpretation 
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of duplication as a formal operation on words has inspired several works in the area of Formal Languages, opened by [5,24]
and continued in a series of papers, see, e.g., [12,13] and the references therein. A special type of duplications inspired by 
the tandem repeats, known as telomeres, which appear only at the end of chromosomes, has been considered in [9]. They 
are considered to be protective DNA-protein complexes found at the end of eukaryotic chromosomes which stabilize the 
linear chromosomal DNA molecule [4,19]. The length of telomeric DNA is important for the chromosome stability: the loss 
of telomeric repeat sequences may result in chromosome fusion and lead to chromosome instability [16]. Thus, in [9], one 
considers duplications that may only appear at beginning and end of the words only, called prefix–suffix duplications. In 
this context, the aforementioned work investigates the class of languages that can be defined by the iterative application 
of the prefix–suffix duplication to a word and tries to compare it to other well studied classes of languages. Starting from 
the biochemical reality that inspired the definition of this operation in [9], namely that the telomeres cannot be arbitrarily 
long, a restricted variant of duplication, called bounded duplication, was introduced in [7]. In this variant, the length of the 
prefix or suffix that is duplicated is bounded by a predefined constant. In both papers algorithms for computing different 
measures on these operations for words and languages are presented.

On the other hand, the inverse operation, namely reducing repetitions, is very natural. Returning to our source of inspi-
ration, for computing a phylogenetic network (a set of evolutionary relationships between different genes, chromosomes, 
genomes, or even species) it is necessary to detect all squares and compute all possible direct predecessors. But this is just 
one step; if we want to compute other possible predecessors, not necessarily direct ones, this process must be iterated. We 
close these considerations by stressing that the investigation we pursue here is not aimed to tackle real biological solutions. 
The biological phenomenon is just a source of inspiration for our approach; our approach uses the biological concepts at 
a simplified level and only from the point of view of theoretical computer science. Its aim is actually to provide a better 
understanding of the structural properties of strings obtained by prefix–suffix square reductions. On the long run, such tools 
might provide the foundations on which applications working with real data are built.

In this paper, we follow the line opened in [14,15] for the operations considered in [9] and [7]. We define the unbounded 
prefix–suffix square reduction, which is the inverse of the duplication defined in [9] and the bounded prefix–suffix square 
reduction, which is the inverse of the duplication defined in [6,7]. Our operation can be informally defined as the process of 
reducing a square (tandem repeat) to one of its halves, provided that the square is either a prefix or a suffix of the current 
word. We consider both variants: bounded and unbounded as well as, for each of them, the non-iterated and the iterated 
cases.

The paper is organized as follows. In Section 2, we recall all the concepts and notations we need and give the formal 
definitions for the unbounded and bounded prefix–suffix square reductions. Then, in Section 3, we investigate the non-
iterated version of these operations. We show that, in general, the membership for the unbounded prefix–suffix square 
reduction of a language L can be decided in O(nf (n)) time, provided that the membership for L can be decided in O( f (n))

time. The factor n is just the bound in the case of bounded prefix–suffix square reduction. This factor is not necessary for 
regular languages. Then we show that the space complexity of the membership problem for both unbounded and bounded 
prefix–suffix square reduction of a language remains the same to that of the given language. As far as closure properties 
are concerned, the class of regular languages is closed under unbounded and bounded prefix–suffix square reduction, while 
there are linear languages such that their unbounded prefix–suffix square reduction is not even context-free. The iterated 
versions of the bounded and unbounded prefix–suffix square reductions are then considered in Section 4. We show that the 
class of regular languages is still closed under iterated bounded prefix–suffix square reduction, but the unbounded case re-
mains open. We also show that there are linear languages such that their iterated unbounded prefix–suffix square reduction 
is not context-free, while the closure of the classes of linear and context-free languages under iterated bounded prefix–suffix 
square reduction remains open. Afterwards, we define the primitive prefix–suffix square root of a word w as a word x that 
can be obtained from w by iterated prefix–suffix square reductions and is irreducible, i.e., no further prefix or suffix square 
reduction can be applied. The primitive prefix–suffix square root of a language contains all the primitive prefix–suffix square 
roots of its words. The language of primitive prefix–suffix square roots over a given alphabet V is the primitive prefix–suffix 
square root of V ∗ . We prove that this language is never regular for alphabets with at least two symbols in the unbounded 
case, and always regular in the bounded case. The papers ends with Section 5, containing a brief discussion on some open 
problems and some algorithmic aspects.

2. Preliminaries

We assume the reader to be familiar with fundamental concepts of formal language theory and complexity theory (see, 
e.g., [20] and [17], respectively). We start by summarizing the notions used throughout this work. An alphabet is a finite 
and nonempty set of symbols. The cardinality of a finite set A is written card(A). Any finite sequence of symbols from an 
alphabet V is called a word over V . The set of all words over V is denoted by V ∗ and the empty word is denoted by ε; 
we further let V + = V ∗ \ {ε}. Given a word w over an alphabet V , we denote by |w| its length, while |w|a denotes the 
number of occurrences of the symbol a ∈ V in w . Furthermore, alph(w) denotes the minimal alphabet W ⊆ V such that 
w ∈ W ∗ , i.e. alph(w) = {a ∈ V | |w|a �= 0}. Obviously, alph(L) =

⋃

x∈L

alph(x). If w = xyz for some x, y, z ∈ V ∗ , then x, y, z are 

called prefix, subword, suffix, respectively, of w . For a word w , w[i.. j] denotes the subword of w starting at position i and 
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