
JID:TCS AID:11006 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.194; Prn:23/12/2016; 11:57] P.1 (1-8)

Theoretical Computer Science ••• (••••) •••–•••

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Prefix–suffix square reduction

Paolo Bottoni a, Anna Labella a, Victor Mitrana b,∗,1

a Department of Computer Science, “Sapienza” University of Rome, Via Salaria 113, 00198 Rome, Italy
b Faculty of Mathematics and Computer Science, University of Bucharest, Str. Academiei 14, 010014, Bucharest, Romania

a r t i c l e i n f o a b s t r a c t

Article history:
Received 19 July 2016
Received in revised form 28 October 2016
Accepted 2 December 2016
Available online xxxx

Keywords:
Duplication
Prefix–suffix square reduction
Primitive square reduction root
Formal languages

In this work we introduce the operation of prefix–suffix square reduction as the inverse of
the prefix–suffix duplication studied in the literature. This operation reduces all possible
squares that are prefixes or suffixes of a word to one half of these squares. Two variants
are considered, depending on the unbounded and bounded length of the removed prefix
or suffix. We investigate the complexity of the (non-uniform) membership problem for
the prefix–suffix square reduction of a given language and the closure properties of some
classes of languages under these operations as well as under their iterated variants.
Afterwards, we define the primitive prefix–suffix square root of a word w as a word x that
can be obtained from w by iterated prefix–suffix square reductions and it is irreducible
in turn, i.e., no further prefix or suffix square reduction can be applied. We prove that
the language of primitive prefix–suffix square roots of all words over an alphabet is never
regular for alphabets with at least two symbols in the unbounded case, and always regular
in the bounded case. The paper ends with a brief discussion on some open problems and
some algorithmic aspects.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

One of the most frequent and vividly investigated phenomena in different contexts is that of repetitive structures. In
genetics, for instance, one of the less understood mutations among the genome rearrangements is the duplication of a seg-
ment of a chromosome [18]. In the process of duplication, a stretch of DNA is duplicated, yielding two or more adjacent
copies, also called tandem repeats. It is commonly asserted that approximately 5% of the genome is involved in duplications
and the distribution of these tandem repeats varies widely along the chromosomes [23]. An interesting property of tandem
repeats is to make a so-called “phylogenetic analysis” possible, which might be useful in the investigation of the evolution
of species by determining the most likely duplication history [25]. The detection of these tandem repeats, as well as algo-
rithms for tandem repeats reconstructing history, have received a great deal of attention in bioinformatics [2,3,22]. Thus,
duplicating factors and reducing squares to one of their halves is an interesting algorithmic problem with some motivation
from bioinformatics. Reductions of squares seems to be of importance in data compression, where the compressed words
have to contain some information that allows the reconstruction of the original word [10,11].

Treating chromosomes and genomes as languages opens the possibility that the structural information contained in
biological sequences can be generalized and investigated by formal language theory methods [21]. Thus, the interpretation

* Corresponding author.
E-mail addresses: bottoni@di.uniroma1.it (P. Bottoni), labella@di.uniroma1.it (A. Labella), mitrana@fmi.unibuc.ro (V. Mitrana).

1 Research supported by the Visiting Professor Program - “Sapienza” University of Rome.

http://dx.doi.org/10.1016/j.tcs.2016.12.005
0304-3975/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2016.12.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:bottoni@di.uniroma1.it
mailto:labella@di.uniroma1.it
mailto:mitrana@fmi.unibuc.ro
http://dx.doi.org/10.1016/j.tcs.2016.12.005

JID:TCS AID:11006 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.194; Prn:23/12/2016; 11:57] P.2 (1-8)

2 P. Bottoni et al. / Theoretical Computer Science ••• (••••) •••–•••

of duplication as a formal operation on words has inspired several works in the area of Formal Languages, opened by [5,24]
and continued in a series of papers, see, e.g., [12,13] and the references therein. A special type of duplications inspired by
the tandem repeats, known as telomeres, which appear only at the end of chromosomes, has been considered in [9]. They
are considered to be protective DNA-protein complexes found at the end of eukaryotic chromosomes which stabilize the
linear chromosomal DNA molecule [4,19]. The length of telomeric DNA is important for the chromosome stability: the loss
of telomeric repeat sequences may result in chromosome fusion and lead to chromosome instability [16]. Thus, in [9], one
considers duplications that may only appear at beginning and end of the words only, called prefix–suffix duplications. In
this context, the aforementioned work investigates the class of languages that can be defined by the iterative application
of the prefix–suffix duplication to a word and tries to compare it to other well studied classes of languages. Starting from
the biochemical reality that inspired the definition of this operation in [9], namely that the telomeres cannot be arbitrarily
long, a restricted variant of duplication, called bounded duplication, was introduced in [7]. In this variant, the length of the
prefix or suffix that is duplicated is bounded by a predefined constant. In both papers algorithms for computing different
measures on these operations for words and languages are presented.

On the other hand, the inverse operation, namely reducing repetitions, is very natural. Returning to our source of inspi-
ration, for computing a phylogenetic network (a set of evolutionary relationships between different genes, chromosomes,
genomes, or even species) it is necessary to detect all squares and compute all possible direct predecessors. But this is just
one step; if we want to compute other possible predecessors, not necessarily direct ones, this process must be iterated. We
close these considerations by stressing that the investigation we pursue here is not aimed to tackle real biological solutions.
The biological phenomenon is just a source of inspiration for our approach; our approach uses the biological concepts at
a simplified level and only from the point of view of theoretical computer science. Its aim is actually to provide a better
understanding of the structural properties of strings obtained by prefix–suffix square reductions. On the long run, such tools
might provide the foundations on which applications working with real data are built.

In this paper, we follow the line opened in [14,15] for the operations considered in [9] and [7]. We define the unbounded
prefix–suffix square reduction, which is the inverse of the duplication defined in [9] and the bounded prefix–suffix square
reduction, which is the inverse of the duplication defined in [6,7]. Our operation can be informally defined as the process of
reducing a square (tandem repeat) to one of its halves, provided that the square is either a prefix or a suffix of the current
word. We consider both variants: bounded and unbounded as well as, for each of them, the non-iterated and the iterated
cases.

The paper is organized as follows. In Section 2, we recall all the concepts and notations we need and give the formal
definitions for the unbounded and bounded prefix–suffix square reductions. Then, in Section 3, we investigate the non-
iterated version of these operations. We show that, in general, the membership for the unbounded prefix–suffix square
reduction of a language L can be decided in O(nf (n)) time, provided that the membership for L can be decided in O(f (n))

time. The factor n is just the bound in the case of bounded prefix–suffix square reduction. This factor is not necessary for
regular languages. Then we show that the space complexity of the membership problem for both unbounded and bounded
prefix–suffix square reduction of a language remains the same to that of the given language. As far as closure properties
are concerned, the class of regular languages is closed under unbounded and bounded prefix–suffix square reduction, while
there are linear languages such that their unbounded prefix–suffix square reduction is not even context-free. The iterated
versions of the bounded and unbounded prefix–suffix square reductions are then considered in Section 4. We show that the
class of regular languages is still closed under iterated bounded prefix–suffix square reduction, but the unbounded case re-
mains open. We also show that there are linear languages such that their iterated unbounded prefix–suffix square reduction
is not context-free, while the closure of the classes of linear and context-free languages under iterated bounded prefix–suffix
square reduction remains open. Afterwards, we define the primitive prefix–suffix square root of a word w as a word x that
can be obtained from w by iterated prefix–suffix square reductions and is irreducible, i.e., no further prefix or suffix square
reduction can be applied. The primitive prefix–suffix square root of a language contains all the primitive prefix–suffix square
roots of its words. The language of primitive prefix–suffix square roots over a given alphabet V is the primitive prefix–suffix
square root of V ∗ . We prove that this language is never regular for alphabets with at least two symbols in the unbounded
case, and always regular in the bounded case. The papers ends with Section 5, containing a brief discussion on some open
problems and some algorithmic aspects.

2. Preliminaries

We assume the reader to be familiar with fundamental concepts of formal language theory and complexity theory (see,
e.g., [20] and [17], respectively). We start by summarizing the notions used throughout this work. An alphabet is a finite
and nonempty set of symbols. The cardinality of a finite set A is written card(A). Any finite sequence of symbols from an
alphabet V is called a word over V . The set of all words over V is denoted by V ∗ and the empty word is denoted by ε;
we further let V + = V ∗ \ {ε}. Given a word w over an alphabet V , we denote by |w| its length, while |w|a denotes the
number of occurrences of the symbol a ∈ V in w . Furthermore, alph(w) denotes the minimal alphabet W ⊆ V such that
w ∈ W ∗ , i.e. alph(w) = {a ∈ V | |w|a �= 0}. Obviously, alph(L) =

⋃

x∈L

alph(x). If w = xyz for some x, y, z ∈ V ∗ , then x, y, z are

called prefix, subword, suffix, respectively, of w . For a word w , w[i.. j] denotes the subword of w starting at position i and

Download English Version:

https://daneshyari.com/en/article/4952035

Download Persian Version:

https://daneshyari.com/article/4952035

Daneshyari.com

https://daneshyari.com/en/article/4952035
https://daneshyari.com/article/4952035
https://daneshyari.com

