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We present a sound and complete graph calculus for modalities. This calculus is a general 
framework for expressing modal formulas and frame properties, with a rich repertoire of 
relations, and reasoning about them in a uniform manner. The calculus employs graphical 
interpretations of logical operators and builds graphical objects that represent conditions 
on Kripke structures.
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1. Introduction

We present a sound and complete graph calculus for (classical) multi-modal logics [3,6,7].
We begin with some ideas about graph calculi with the purpose of clarifying their role in modal logics. The formalism 

of graph calculus was originally conceived to handle graphically binary relations and their operations [8,12]. It can also be 
used as a graphical (meta-)language for modal logics, providing an intuitive and natural way of handling formulas and frame 
properties.

For instance, the fact that formula 〈r〉 p holds at u is represented by û r w p .1 This amounts exactly to the 
model one would have in mind upon first seeing this modal formula, i.e. p holds at some w r-reachable from u. Similarly, 
the fact that 〈r〉 〈r〉 p holds at u can be represented by û r v r w p . Also, we represent that 〈r〉 〈s〉 (p ∧ q)

holds at u by û r v s w p

q

. In this manner, we display the conditions for satisfaction of a modal formula: 

we will write 〈t〉 ϕ holds at x as x̂ t y ϕ .
The aim of this paper is to provide a framework for representing and reasoning graphically about modal logics [3,6,7]. 

Now, what are the advantages of presenting a modal logic as a graph calculus? Our graph languages are more expressive 
than standard ways of representing modal operators. Modal languages correspond to the guarded fragment of First-order 
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Logic, whereas graph languages correspond to the fragment of First-order Logic with at most two free variables, unary 
and binary predicates and with universal and existential quantifiers, a very expressive fragment. We will not need the 
whole fragment to present modal operators, but the graph calculus will allow us to express some operators that cannot be 
expressed in standard ways of presenting modal logics: modalities like intersection [1,2] and difference [3] can be, easily 
and naturally, presented without any side conditions, in contrast with other presentations [1–3].

We would like to clarify some distinctions between graph calculi and other methods for handling logics. Natural deduc-
tion relies on rules for introducing and eliminating logical operators (connectives, etc.) and its aim is building derivation 
trees. In tableaux, the emphasis is on rules that describe truth/falsity conditions for logical operators and the aim is 
constructing refutation trees. Graph calculi employ graphical interpretations of logical operators and the aim is building 
graphical objects that represent conditions on models.

To illustrate the ideas discussed above, consider the modal operator 〈r �s〉, which involves the intersection of the relations 
R and S corresponding to r and s, respectively. Its intended meaning is: 〈r � s〉 ϕ holds at a state a iff ϕ holds at some state 
b that is R ∩ S-reachable from a (i.e. M, a � 〈r � s〉ϕ iff there exists b such that (a, b) ∈ rM ∩ sM and M, b � ϕ). One could 
try to present it axiomatically by 〈r � s〉 ϕ ↔ 〈r〉 ϕ ∧ 〈s〉 ϕ . Of course, this does not work. The right-hand side amounts to 
〈r〉 ϕ ∧ 〈s〉 ϕ holds at state a iff there exist states b′ and b′′ such that b′ is R-reachable from a with ϕ holding at b′ and b′′ is 
S-reachable from a with ϕ holding at b′′; the difficulty lies in forcing b′ = b′′ . (Formula 〈r � s〉 ϕ → 〈r〉 ϕ ∧ 〈s〉 ϕ is valid, but 
one can easily falsify 〈r〉 ϕ ∧ 〈s〉 ϕ → 〈r � s〉 ϕ at state a of the model with M = {a, b′, b′′} , R = {(a, b′)}, S = {(a, b′′)} and 
V(p) = {b′, b′′}.) One can similarly see that [r � s] ϕ ↔ [r] ϕ ∧ [s] ϕ does not work. For tableaux, we could have rules like the 
following ones:

R〈r�s〉:
u : 〈r � s〉ϕ

v : ϕ R¬〈r�s〉:
u : ¬〈r � s〉ϕ

v : ¬ϕ

But, we need some sort of side conditions connecting u and v (see [1,2]).

In contrast, in graph calculus we can have a natural rule defining r � s, namely: rewrite u r � s v as u
r

s
v . This 

parallel-arc rule, together with the above rule for 〈t〉 ϕ , will enable us to write the fact that formula 〈r � s〉 ϕ holds at x as 

x̂
r

s
y ϕ .

Now, consider a more general situation. Assume that one wishes to express the condition: “whenever we have c R a, 
a S d, c S b, b R d, we also have a R b”. This can be expressed quite neatly in graph calculus by the following natural rewrite 
rule:

x s

u

r

s

v

y r
∼

x s

ru

r

s

v

y r

It is not easy to figure out how one could express this situation by modal formulas, in tableaux, natural deduction or 
axiomatically. The 2-dimensional notation used in the graph approach has various advantages: besides its rich expressive 
power, it has a visual appeal that renders expressing formulas properties and reasoning about them both natural and easy.

In the sequel we will present our (rather expressive and easy to use) graph calculus for modalities [3,6,7]. In Section 2
we introduce, by means of illustrative examples, some ideas about graphs and modalities. In Section 3 we examine some 
concepts and results about graphs. Section 4 presents our calculus, which we analyze in Section 5. Section 6 presents some 
concluding remarks and comparison with other approaches, whereas Appendix A gives some details. We try to work at 
two levels: an intuitive one and a formal one. The intuitive level illustrates how the calculus is used by relying on visual 
examples. At the other level, which may be understood as a meta-level, we describe the calculus in a general manner, by 
means of precise concepts.

2. Graphs and modalities: basic ideas

We now introduce informally some basic ideas about graphs and modalities. These and other ideas will be formulated 
more precisely later on: in Sections 3 and 4. We use terminology inherited from previous papers, which should not be 
confused with similar terms in other areas.

A graph amounts to a finite set of (alternative) slices. A slice S consists of an underlying draft S together with a list 
of distinguished nodes. A draft consists of finite sets of nodes and arcs. In the usual graph-theoretic terms, a draft is a 
labeled graph and a slice is a one or two rooted graph. Drafts (and sketches, to be introduced in Section 3) serve to 
describe restrictions on states. Slices may be 1-ary or 2-ary: a 1-ary slice has a single distinguished node (marked ̂) and 
a 2-ary slice has a pair of distinguished nodes (marked by →); they will represent sets of states and sets of pairs of states, 
respectively (see Examples 2.1: Formula consequence and 2.4: Relational inclusions).
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