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We study some aspects of the invariant pair problem for matrix polynomials, as introduced 
by Betcke and Kressner [3] and by Beyn and Thümmler [6]. Invariant pairs extend the 
notion of eigenvalue–eigenvector pairs, providing a counterpart of invariant subspaces for 
the nonlinear case. We compute formulations for the condition numbers and the backward 
error for invariant pairs and solvents. We then adapt the Sakurai–Sugiura moment method 
[1] to the computation of invariant pairs, including some classes of problems that have 
multiple eigenvalues. Numerical refinement via a variant of Newton’s method is also 
studied. Furthermore, we investigate the relation between the matrix solvent problem and 
the triangularization of matrix polynomials.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Invariant pairs, introduced and analyzed in [3,6] and [34], are a generalization of eigenpairs for matrix polynomials. Let 
P (λ) =∑�

j=0 A jλ
j be an n ×n matrix polynomial, and choose a positive integer k. Then the matrices X, S of sizes n ×k and 

k × k, respectively, form an invariant pair of size k for P (λ) if

P (X, S) :=
�∑

j=0

A j X S j = 0.

Invariant pairs offer a unified theoretical perspective on the problem of computing several eigenvalue–eigenvector pairs for 
a given matrix polynomial. From a numerical point of view, moreover, the computation of an invariant pair tends to be 
more stable than the computation of single eigenpairs, particularly in the case of multiple or tightly clustered eigenvalues. 
Observe that the notion of invariant pairs can also be applied to more general nonlinear problems, although here we will 
limit our presentation to matrix polynomials.

How to compute invariant pairs? Beyn and Thümmler [6] adopt a continuation method of predictor–corrector type. 
Betcke and Kressner [3], on the other hand, establish a correspondence between invariant pairs of a given polynomial and 
of its linearizations. Invariant pairs for P (λ) are extracted from invariant pairs of a linearized form and then refined via 
Newton’s method.

The approach we take in this paper to compute invariant pairs is based on contour integrals. Being able to specify the 
contour � allows us to select invariant pairs that have eigenvalues in a prescribed part of the complex plane. Contour in-
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tegrals play an important role in the definition and computation of moments, which form a Hankel matrix pencil yielding 
the eigenvalues of the given matrix polynomial that belong to the prescribed contour. The use of Hankel pencils of moment 
matrices is widespread in several applications such as control theory, signal processing or shape reconstruction, but non-
linear eigenvalue–eigenvector problems can also be tackled through this approach, as suggested for instance in [1] and [4]. 
E. Polizzi’s FEAST algorithm [31] is also an interesting example of contour-integral based eigensolver applied to large-scale 
electronic structure computations.

Here we adapt such methods to the computation of invariant pairs. This work studies in particular the scalar moment 
method and its relation with the multiplicity structure of the eigenvalues, but it also explores the behavior of the block 
version. We seek to compute invariant pairs while avoiding the linearization of P (λ), which explains the choice of moment 
methods. We are motivated, in part, by the problem of better understanding the invariant pair problem in a symbolic or 
symbolic–numeric framework, that is, computing invariant pairs exactly, or with arbitrary accuracy via an effective combi-
nation of symbolic and numerical techniques: this is one of the reasons why we are interested in the issue of eigenvalue 
multiplicity.

The last part of the paper shows an application of our results on invariant pairs to the particular case of matrix solvents, 
that is, to the matrix equation

P (S) :=
�∑

j=0

A j S j = 0.

The matrix solvent problem has received remarkable attention in the literature, since Sylvester’s work [33] in the 1880s. 
The relation between the Riccati and the quadratic matrix equation is highlighted in [7], whereas a study on the existence 
of solvents can be found in [13]. Several works address the problem of computing a numerical approximation for the 
solution of the quadratic matrix equation: an approach to compute, when possible, the dominant solvent is proposed in 
[12]. Newton’s method and some variations are also used to approximate solvents numerically: see for example [11,22,21,
27]. The work in [19] uses interval arithmetic to compute an interval matrix containing the exact solution to the quadratic 
matrix equation. For the case of the general matrix solvent problem, we can also cite [9,30] and [23]. On the other hand, 
the question of designing symbolic algorithms for computing solvents remains relatively unexplored. Attempts have been 
made to formulate the problem as a system of polynomial equations which can be solved via standard methods. However, 
this approach becomes cumbersome for problems of large size (see [20]).

Here we exhibit computable formulations for the condition number and backward error of the general matrix solvent 
problem, generalizing existing works on the quadratic matrix equation. Moreover, we propose an adaptation of the moment 
method to the computation of solvents. Finally, we build on existing work on triangularization of matrix polynomials (see 
[38] and [35]) and explore the relationship between solvents of matrix polynomials in general and in triangularized form.

The paper is organized as follows. Section 2 introduces preliminary notions, definitions and notation. The backward error 
and condition number for the invariant pair problem are computed in Section 2.1.

Section 3 is devoted to the computation of eigenvalues and invariant pairs through moments and Hankel pencils. Our 
main results here consist in Theorem 5, Corollary 1 and Theorem 7. A comparison of different techniques for numerical 
refinement of invariant pairs is presented in Section 3.4.

Finally, Sections 4, 5 and 6 are devoted to the applications to matrix solvents.
The methods presented in the paper have been implemented both in a symbolic (exact) and in a numerical version. The 

Maple and Matlab codes are available online at the URL http :/ /www.unilim .fr /pages _perso /esteban .segura /software .html.

2. Matrix polynomials and invariant pairs

A complex n × n matrix polynomial P (λ) of degree � takes the form:

P (λ) = A0 + A1λ + A2λ
2 + · · · + A�λ

� (1)

where A� �= 0 and Ai ∈ C
n×n , for i = 0, . . . , �.

In this work, we assume that P (λ) is regular, i.e., detP (λ) does not vanish identically.
A crucial property of matrix polynomials is the existence of the Smith form (see, e.g., [17]):

Theorem 1. [Thm. S1.1, [17]] Every n × n regular matrix polynomial P (λ) admits the representation

D(λ) = E(λ)P (λ)F (λ), (2)

where D(λ) = diag (d1(λ), . . . ,dn(λ)) is a diagonal polynomial matrix with monic scalar polynomials di(λ) such that di(λ) is divisible 
by di−1(λ); E(λ) and F (λ) are matrix polynomials of size n × n with constant nonzero determinants.

The polynomial eigenvalue problem (PEP) consists in determining right eigenvalue–eigenvector pairs (λ, x) ∈ C ×C
n , with 

x �= 0, such that

P (λ)x = 0,
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