
Theoretical Computer Science 677 (2017) 41–55

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Contention-sensitive data structures and algorithms ✩

Gadi Taubenfeld

The Interdisciplinary Center, P.O.Box 167, Herzliya 46150, Israel

a r t i c l e i n f o a b s t r a c t

Article history:
Received 30 August 2015
Received in revised form 15 March 2017
Accepted 23 March 2017
Available online 25 March 2017
Communicated by D. Peleg

Keywords:
Contention-sensitive
Interference
Synchronization
Locks
Shortcut code
Disable-free
Prevention-free
Livelock
Starvation
k-obstruction-free
Wait-free

A contention-sensitive data structure is a concurrent data structure in which the overhead 
introduced by locking is eliminated in common cases, when there is no contention, or 
when processes with non-interfering operations access it concurrently. When a process 
invokes an operation on a contention-sensitive data structure, in the absence of contention 
or interference, the process must be able to complete its operation in a small number of 
steps and without using locks. Using locks is permitted only when there is interference. 
We formally define the notion of contention-sensitive data structures, propose four general 
transformations that facilitate devising such data structures, and illustrate the benefits of 
the approach by implementing a contention-sensitive consensus algorithm, a contention-
sensitive double-ended queue data structure, and a contention-sensitive election algorithm.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Motivation

Concurrent access to a data structure shared among several processes must be synchronized in order to avoid inter-
ference between conflicting operations. Mutual exclusion locks are the de facto mechanism for concurrency control on 
concurrent data structures: a process accesses the data structure only inside a critical section code, within which the pro-
cess is guaranteed exclusive access. Any sequential data structure can be easily made concurrent using such a locking 
approach. The popularity of this approach is largely due to the apparently simple programming model of such locks, and 
the availability of lock implementations which are reasonably efficient.

When using locks, the granularity of synchronization is important. Using a single lock to protect the whole data structure, 
allowing only one process at a time to access it, is an example of coarse-grained synchronization. In contrast, fine-grained
synchronization enables to lock “small pieces” of a data structure, allowing several processes with non-interfering operations 
to access it concurrently. Coarse-grained synchronization is easier to program but is less efficient compared to fine-grained 
synchronization.

✩ A preliminary version of the results presented in this paper, has appeared in Proceedings of the 23rd International Symposium on Distributed Computing
(DISC 2009), Elche, Spain, September 2009.

E-mail address: tgadi@idc.ac.il.

http://dx.doi.org/10.1016/j.tcs.2017.03.017
0304-3975/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2017.03.017
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:tgadi@idc.ac.il
http://dx.doi.org/10.1016/j.tcs.2017.03.017
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2017.03.017&domain=pdf


42 G. Taubenfeld / Theoretical Computer Science 677 (2017) 41–55

Using locks may, in various scenarios, degrade the performance of concurrent applications, as it enforces processes to 
wait for a lock to be released. Moreover, slow or stopped processes may prevent other processes from ever accessing the 
data structure. Locks can introduce false conflicts, as different processes with non-interfering operations contend for the 
same lock, only to end up accessing disjoint data.

A promising approach is the design of concurrent data structures and algorithms which avoid locking. The advantages 
of such algorithms are that they are not subject to priority inversion, they are resilient to failures, and they do not suffer 
significant performance degradation from scheduling preemption, page faults or cache misses. On the other hand, such 
algorithms may impose too much overhead upon the implementation and are often complex.

We propose an intermediate approach for the design of concurrent data structures, which incorporates ideas from the 
work on data structures which avoid locking. While the approach guarantees the correctness and fairness of a concurrent 
data structure under all possible scenarios, it is especially efficient in common cases when there is no (or low) contention, 
or when processes with non-interfering operations access a data structure concurrently.

1.2. Contention-sensitive data structures: the basic idea

Contention for accessing a shared object is usually rare in well designed systems. Contention occurs when multiple pro-
cesses try to acquire a lock at the same time. Hence, a desired property in a lock implementation is that, in the absence 
of contention, a process can acquire the lock extremely fast, without unnecessary delays. Furthermore, such fast imple-
mentations decrease the possibility that processes which invoke operations on the same data structure in about the same 
time but not simultaneously, will interfere with each other. However, locks were introduced in the first place to resolve 
conflicts when there is contention, and acquiring a lock always introduces some overhead, even in the cases where there is 
no contention or interference.

We propose an approach which, in common cases, eliminates the overhead involved in acquiring a lock. The idea is 
simple: assume that, for a given data structure, it is known that in the absence of contention or interference it takes some 
fixed number of steps, say at most 10 steps, to complete an operation, not counting the steps involved in acquiring and 
releasing the lock. According to our approach, when a process invokes an operation on a given data structure, it first tries 
to complete its operation, by executing a short code, called the shortcut code, which does not involve locking. Only if it does 
not manage to complete the operation fast enough, i.e., within 10 steps, it tries to access the data structure via locking. The 
shortcut code is required to be wait-free. That is, its execution by a process takes only a finite number of steps and always 
terminates, regardless of the behavior of the other processes.

Using an efficient shortcut code, although eliminates the overhead introduced by locking in common cases, introduces 
a major problem: we can no longer use a sequential data structure as the basic building block, as done when using the 
traditional locking approach. The reason is simple, many processes may access the same data structure simultaneously 
by executing the shortcut code. Furthermore, even when a process acquires the lock, it is no longer guaranteed to have 
exclusive access, as another process may access the same data structure simultaneously by executing the shortcut code.

Thus, a central question which we are facing is: if a sequential data structure cannot be used as the basic building 
block for a general technique for constructing a contention-sensitive data structure, then what is the best data structure to 
use? Before we proceed to discuss formal definitions and general techniques, which will also help us answering the above 
question, we demonstrate the idea of using a shortcut code to avoid locking – in the absence of synchronization conflicts – 
by presenting a contention-sensitive solution to the binary consensus problem using atomic read/write registers and a single 
lock.

1.3. A simple example: contention-sensitive consensus

The consensus problem is to design an algorithm in which all correct processes reach a common decision based on their 
initial opinions. A consensus algorithm is an algorithm that produces such an agreement. While various decision rules can be 
considered such as “majority consensus”, the problem is interesting even where the decision value is constrained only when 
all processes are unanimous in their opinions, in which case the decision value must be the common opinion. A consensus 
algorithm is called binary consensus when the number of possible initial opinions is two.

Processes are not required to participate in the algorithm, however, once a process starts participating it is guaranteed 
that it may fail only while executing the shortcut code. The algorithm uses an array x[0..1] of two atomic bits, and two 
atomic registers y and out. After a process executes a decide() statement, it immediately terminates.

Contention-sensitive Binary Consensus: program for process pi with input ini ∈ {0,1}.

shared x[0..1] : array of two atomic bits, initially both 0
y, out : atomic registers which range over {⊥,0,1}, initially both ⊥

1 x[ini] := 1 // start shortcut code
2 if y =⊥ then y := ini fi
3 if x[1 − ini] = 0 then out := ini ; decide(ini) fi
4 if out �=⊥ then decide(out) fi // end shortcut code
5 lock if out =⊥ then out := y fi unlock ; decide(out) // locking



Download English Version:

https://daneshyari.com/en/article/4952096

Download Persian Version:

https://daneshyari.com/article/4952096

Daneshyari.com

https://daneshyari.com/en/article/4952096
https://daneshyari.com/article/4952096
https://daneshyari.com

