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Cooperative matching games have drawn much interest partly because of the connection 
with bargaining solutions in the networking environment. However, it is not always 
guaranteed that a network under investigation gives rise to a stable bargaining outcome. 
To address this issue, we consider a modification process, called stabilization, that yields 
a network with stable outcomes, where the modification should be as small as possible. 
Therefore, the problem is cast to a combinatorial-optimization problem in a graph. 
Recently, the stabilization by edge removal was shown to be NP-hard. On the contrary, in 
this paper, we show that other possible ways of stabilization, namely, edge addition, vertex 
removal and vertex addition, are all polynomial-time solvable. Thus, we obtain a complete 
complexity-theoretic classification of the natural four variants of the network stabilization 
problem. We further study weighted variants and prove that the variants for edge addition 
and vertex removal are NP-hard.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Background

Matching markets play a central role in economics and game theory, and much work has been done. Among them, we 
concentrate on cooperative games with transferable utility derived from matchings in a network, called matching games, 
which are also known as stable roommate problems with side payments (when it is modeled as a cooperative game). The 
following example was given by Eriksson and Karlander [19] to motivate such games.

✩ A preliminary version appears in International Conference on Autonomous Agents and Multiagent Systems (AAMAS2016).
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In the professional tennis circuit, there are parallel singles and doubles tournaments. Although the prize money in the 
doubles is not as generous as in the singles, the sums are still impressive. The players are free to form pairs for the 
doubles as they choose. It is not necessarily so that the two best single players make the best team; the strength of a 
pair is a more complex function of the players abilities.

The players know each others’ strengths and weaknesses, and can make good estimates of the expected prize money 
for each possible constellation. In the process of forming pairs, the players negotiate how to distribute the expected 
income within the pair. (At least, this is what rational tennis players should do.) The objective of each player in this 
process is to maximize his own expected prize money.

As a cooperative game with transferable utility, in a matching game, we are given a network (or an undirected graph), 
and each vertex of the network corresponds to a player of the game. A matching is a set of pairs of players such that every 
player is involved in at most one pair, and a pair can be formed only if there is an edge between two players. The network 
is often associated with edge weights so that the utility of forming a pair can be incorporated. The characteristic function 
value of a coalition is defined as the maximum possible total utility of a matching over the coalition.

Matching games have attracted researchers, and solution concepts for matching games have been studied through the 
algorithmic lens [20,11,10,27,25,15,5]. In particular, there is a polynomial-time algorithm to test whether a given matching 
game has a non-empty core [16], where the core is defined as the set of payoff vectors such that no coalition has a 
characteristic function value larger than the total payoff allocated to the players of the coalition. Thus, a “stable” payoff 
exists in a game with a non-empty core. We here note that if the underlying network is bipartite, then the game is called 
an assignment game, which is also well studied in the literature [31,41].

On the other hand, if the core of a game is empty, then no payoff is stable. Therefore, we often modify the game itself 
to achieve the core non-emptiness. The literature offers options of taxation [33,45], cost of stability [6], and least cores [27]. 
In this paper, we consider a structural modification of the underlying network, which better fits another motivation from 
network bargaining as explained later. The modification should be as small as possible so that the games themselves do not 
differ much.

There are several possible ways of modification. We consider the following four processes.

Edge removal: We remove a set of edges from the network. In this case, we want to remove as few edges as possible.
Edge addition: We add a set of edges to the network. In this case, we want to add as few edges as possible.
Vertex removal: We remove a set of vertices from the network. When we remove a vertex, all the edges incident to the 

vertex are removed too. In this case, we want to remove as few vertices as possible.
Vertex addition: We add a set of vertices to the network. When we add a vertex, we may also add edges from the new 

vertex to any of the existing vertices. In this case, we want to add as few vertices as possible.

The literature only studied edge removal. Namely, the problem was to find a smallest subset of edges whose removal 
results in a network with non-empty core. Biró et al. [10] proved that the problem is NP-hard for the weighted case. 
Later, Bock et al. [13] proved that the problem is still NP-hard for the unweighted case (as introduced above), and hard to 
approximate within factor less than two assuming the unique games conjecture [28]. Some approximation algorithms have 
been proposed [13,30], but the existence of a constant-factor approximation algorithm is left open.

1.2. Our results

We study the remaining three options, namely, edge addition, vertex removal, and vertex addition. For all of them, we 
prove that the problems can be solved in polynomial time (Sections 3, 4, and 5, respectively). In this way, we obtain the 
complete complexity classification of the problem variants, and reveal that edge removal studied in the literature is the only 
hard case.

Those polynomial-time algorithms are obtained by a thorough treatment of the so-called Gallai–Edmonds decompositions 
that possess useful information on the structure of maximum matchings in a graph. We also utilize the theory of linear 
programming, as explained later, to connect our problems with fractional matchings of a graph.

One may think that in vertex addition, we may add a lot of edges at the same time even though we add only one 
vertex. However, as it turns out, our algorithm finds a solution which adds as few edges as possible among all the possible 
solutions for the vertex addition variant.

We also consider a weighted variant. In the edge addition variant, each possible edge is associated with a non-negative 
real number. In the vertex removal variant, each vertex is associated with a non-negative real number. Those numbers 
represent costs of addition or removal. That models a more realistic situation where each possible modification operation is 
not equivalently manageable. With this setup, we prove that for the edge addition and the vertex removal, the problem is
NP-hard (Section 6).

The results are summarized in Table 1.
Simultaneously with us, Ahmadian, Sanita, and Hosseinzadeh [1] consider the vertex removal variant, and prove its 

polynomial-time solvability and the NP-hardness of the weighted variant. Furthermore, they propose approximation algo-
rithms for the weighted variant.
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