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In Source Location (SL) problems the goal is to select a minimum cost source set S ⊆ V
such that the connectivity (or flow) ψ(S, v) from S to any node v is at least the demand dv

of v . In many SL problems ψ(S, v) = dv if v ∈ S , so the demand of nodes selected to S is 
completely satisfied. In a variant suggested recently by Fukunaga [7], every node v selected 
to S gets a “bonus” pv ≤ dv , and ψ(S, v) = pv +κ(S \ {v}, v) if v ∈ S and ψ(S, v) = κ(S, v)

otherwise, where κ(S, v) is the maximum number of internally disjoint (S, v)-paths. While 
the approximability of many SL problems was seemingly settled to �(ln d(V )) in [20], for 
his variant on undirected graphs Fukunaga achieved ratio O (k ln k), where k = maxv∈V dv

is the maximum demand. We improve this by achieving ratio min{p∗ ln k, k} · O (lnk) for 
a more general version with node capacities, where p∗ = maxv∈V pv is the maximum 
bonus. In particular, for the most natural case p∗ = 1 we improve the ratio from O (k ln k)

to O (ln2 k). To derive these results, we consider a particular case of the Survivable 
Network (SN) problem when all edges of positive cost form a star. We obtain ratio 
O (min{lnn, ln2 k}) for this variant, improving over the best ratio known for the general 
case O (k3 ln n) of Chuzhoy and Khanna [4]. Finally, we obtain a logarithmic ratio for a 
generalization of SL where we also have edge-costs and flow-cost bounds {bv : v ∈ V }, and 
require that the minimum cost of a flow of value dv from S to every node v is at most bv .

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In Source Location (SL) problems, the goal is to select a minimum cost source set S ⊆ V such that the connectivity from 
S to any node v is at least the demand dv of v . Formally, the generic version of this problem is as follows.

Source Location (SL)
Instance: A graph G = (V , E) with node-costs c = {cv : v ∈ V }, connectivity demands d = {dv : v ∈ V }, and a source 
connectivity function ψ : 2V × V → Z+ , where Z+ denotes the set of non-negative integers.
Objective: Find a minimum cost source node set S ⊆ V such that ψ(S, v) ≥ dv for every v ∈ V .

✩ Preliminary version appeared in WG 2015: 203-218.
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Table 1
Previous approximation ratios and lower bounds for SL problems. GC and UC stand for general 
and uniform costs, GD and UD stand for general and uniform demands, respectively.

c,d λ (p,q ≡ k) κ

Undirected Directed Undirected Directed

GC,GD �(ln d(V )) [2,20] �(ln d(V )) [2,20] �(ln d(V )) [2,20] �(ln d(V )) [2,20]
GC,UD in P [1] O (ln d(V )) [2] O (ln d(V )) [2] O (ln d(V )) [2]
UC,GD in P [1] O (ln d(V )) [2] O (ln d(V )) [2] O (ln d(V )) [2]
UC,UD in P [22] in P [3] O (ln d(V )) [2] O (ln d(V )) [2]

κ̂ (p ≡ k, q ≡ 1) κ ′ (q ≡ 1)

GC,GD �(ln d(V )) [20] �(ln d(V )) [20]
O (k lnk) [7] O (k lnk) [7]

GC,UD in P [16] in P [16]
UC,GD O (ln d(V )) [20] O (ln d(V )) [20]

O (k) [9]
UC,UD in P [16] in P [16]

Several source connectivity functions ψ appear in the literature. To avoid considering many cases, we suggest two generic 
types, that include previous particular cases.

Definition 1.1. An integer set-function f on a groundset U is submodular if f (A) + f (B) ≥ f (A ∩ B) + f (A ∪ B) for all 
A, B ⊆ U , and f is non-decreasing if f (A) ≤ f (B) for all A ⊆ B ⊆ U .

Definition 1.2. Let G = (V , E) be a graph with node capacities {qu : u ∈ V }. For S ⊆ V and v ∈ V the (S, v)-q-connectivity
λ

q
G(S, v) is the maximum number of edge-disjoint paths from S \ {v} to v in G such that every node u ∈ V is an internal 

node in at most qu paths. Given connectivity bonuses {pu ≥ qu : u ∈ V }, the (S, v)-(p, q)-connectivity λ
p,q
G (S, v) is defined 

by: λp,q
G (S, v) = pv + λ

q
G(S, v) if v ∈ S , and λp,q

G (S, v) = λ
q
G(S, v) otherwise.

We will say that a source connectivity function ψ(S, v) is submodular if for every v ∈ V the function f v(S) =
ψ(S, v) is submodular and non-decreasing; ψ(S, v) is survivable if it is of the type ψ(S, v) = λ

p,q
G (S, v). The concept 

of q-connectivity is essentially “mixed connectivity” (the case qu ∈ {0, k}) introduced by Frank, Ibaraki, and Nagamochi [5], 
while (p, q)-connectivity combines it with the connectivity function introduced recently by Fukunaga [7] (the case q ≡ 1). 
The case of arbitrary node capacities includes additional connectivity versions compared to [7], e.g., the edge-connectivity 
case.

It is not hard to see that every survivable source connectivity function ψ(S, v) is submodular (see Section 4), but the 
inverse is not true in general. This gives only two types of SL problems.

Submodular SL: The connectivity function ψ(S, v) is submodular.
Survivable SL: The connectivity function ψ(S, v) is survivable.

We list four source connectivity functions that appear in the literature. All of them are submodular, and three of them 
are also survivable. Given an SL instance let k = maxv∈V dv denote the maximum demand, and in the case of Survivable SL
let p∗ = maxu∈V pu denote the maximum connectivity bonus and q∗ = minu∈V qu denote the minimum node capacity. In 
what follows assume that 1 ≤ qu ≤ pu ≤ k for all u ∈ V , and thus 1 ≤ p∗ ≤ k and 1 ≤ q∗ ≤ k holds.

1. λ-SL: λG(S, v) is the maximum number of pairwise edge-disjoint (S, v)-paths if v /∈ S and λG(S, v) = ∞ otherwise.
This is Survivable SL with pu = qu = k for every u ∈ V .

2. κ -SL: κ(S, v) is the maximum number of (S, v)-paths no two of which have a common node in V \ (S ∪ v) if v /∈ S , 
and κ(S, v) = ∞ otherwise.

3. κ̂ -SL: κ̂(S, v) is the maximum number of (S, v)-paths no two of which have a common node in V \ {v} if v /∈ S , and 
κ̂(S, v) = ∞ otherwise.
This is Survivable SL with pu = k and qu = 1 for every u ∈ V .

4. κ ′-SL: κ ′(S, v) = κ̂(S, v) if v /∈ S and κ ′(S, v) = pv + κ̂(S \ {v}, v) if v ∈ S .
This is Survivable SL with qu = 1 for every u ∈ V .

The known approximability status of SL problems with source connectivity functions λ, κ, κ̂ , κ ′ , is summarized in Ta-
ble 1; see also a survey in [15]. The approximability of λ, κ, κ̂ -SL problems was settled to O (ln d(V )) in [20] (where 
d(V ) = ∑

v∈V dv ), while Fukunaga [7] showed that undirected κ ′-SL admits ratio O (k ln k). We prove the following.
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