Theoretical Computer Science ••• (••••) •••-•••

Contents lists available at ScienceDirect

Theoretical Computer Science

TCS:11070

www.elsevier.com/locate/tcs

Approximating source location and star survivable network problems $\stackrel{\mbox{\tiny{\sc black}}}{\rightarrow}$

Guy Kortsarz^{a,1}, Zeev Nutov^{b,*}

^a Rutgers University, Camden, United States

^b The Open University of Israel, Israel

ARTICLE INFO

Article history: Received 15 July 2015 Received in revised form 17 November 2016 Accepted 9 February 2017 Available online xxxx Communicated by D. Peleg

Keywords: Source location Survivable network Submodular cover ABSTRACT

In Source Location (SL) problems the goal is to select a minimum cost source set $S \subseteq V$ such that the connectivity (or flow) $\psi(S, v)$ from S to any node v is at least the demand d_v of v. In many SL problems $\psi(S, v) = d_v$ if $v \in S$, so the demand of nodes selected to S is completely satisfied. In a variant suggested recently by Fukunaga [7], every node v selected to S gets a "bonus" $p_v \leq d_v$, and $\psi(S, v) = p_v + \kappa(S \setminus \{v\}, v)$ if $v \in S$ and $\psi(S, v) = \kappa(S, v)$ otherwise, where $\kappa(S, v)$ is the maximum number of internally disjoint (S, v)-paths. While the approximability of many SL problems was seemingly settled to $\Theta(\ln d(V))$ in [20], for his variant on undirected graphs Fukunaga achieved ratio $O(k \ln k)$, where $k = \max_{v \in V} d_v$ is the maximum demand. We improve this by achieving ratio $\min\{p^* \ln k, k\} \cdot O(\ln k)$ for a more general version with node capacities, where $p^* = \max_{v \in V} p_v$ is the maximum bonus. In particular, for the most natural case $p^* = 1$ we improve the ratio from $O(k \ln k)$ to $O(\ln^2 k)$. To derive these results, we consider a particular case of the Survivable Network (SN) problem when all edges of positive cost form a star. We obtain ratio $O(\min\{\ln n, \ln^2 k\})$ for this variant, improving over the best ratio known for the general case $O(k^3 \ln n)$ of Chuzhoy and Khanna [4]. Finally, we obtain a logarithmic ratio for a generalization of SL where we also have edge-costs and flow-cost bounds $\{b_v : v \in V\}$, and require that the minimum cost of a flow of value d_v from S to every node v is at most b_v . © 2017 Elsevier B.V. All rights reserved.

1. Introduction

In Source Location (SL) problems, the goal is to select a minimum cost source set $S \subseteq V$ such that the connectivity from S to any node v is at least the demand d_v of v. Formally, the generic version of this problem is as follows.

Source Location (SL) *Instance:* A graph G = (V, E) with node-costs $c = \{c_v : v \in V\}$, **connectivity demands** $d = \{d_v : v \in V\}$, and a **source connectivity function** $\psi : 2^V \times V \to \mathbb{Z}_+$, where \mathbb{Z}_+ denotes the set of non-negative integers. *Objective:* Find a minimum cost source node set $S \subseteq V$ such that $\psi(S, v) \ge d_v$ for every $v \in V$.

* Corresponding author.

http://dx.doi.org/10.1016/j.tcs.2017.02.008 0304-3975/© 2017 Elsevier B.V. All rights reserved.

Please cite this article in press as: G. Kortsarz, Z. Nutov, Approximating source location and star survivable network problems, Theoret. Comput. Sci. (2017), http://dx.doi.org/10.1016/j.tcs.2017.02.008

^{*} Preliminary version appeared in WG 2015: 203-218.

E-mail addresses: guyk@camden.rutgers.edu (G. Kortsarz), nutov@openu.ac.il (Z. Nutov).

¹ Supported by NSF grants 1218620 and 1540547.

Table 1

2

Previous approximation ratios and lower bounds for SL problems. GC and UC stand for general and uniform costs, GD and UD stand for general and uniform demands, respectively.

c,d	$\lambda (p,q \equiv k)$		κ	
	Undirected	Directed	Undirected	Directed
GC,GD	$\Theta(\ln d(V))$ [2,20]	$\Theta(\ln d(V))$ [2,20]	$\Theta(\ln d(V))$ [2,20]	$\Theta(\ln d(V))$ [2,20]
GC,UD	in P [1]	$O(\ln d(V))$ [2]	$O(\ln d(V))$ [2]	$O(\ln d(V))$ [2]
UC,GD	in P [1]	$O(\ln d(V))$ [2]	$O(\ln d(V))$ [2]	$O(\ln d(V))$ [2]
UC,UD	in P [22]	in P [3]	$O(\ln d(V))$ [2]	$O(\ln d(V))$ [2]
	$\hat{\kappa} \ (p \equiv k, q \equiv 1)$		$\kappa' \ (q \equiv 1)$	
GC,GD	$\Theta(\ln d(V))$ [20]	$\Theta(\ln d(V))$ [20]		
	$O(k \ln k)$ [7]		$O(k \ln k)$ [7]	
GC,UD	in P [16]	in P [16]		
UC,GD	$O(\ln d(V))$ [20]	$O(\ln d(V))$ [20]		
	O(k) [9]			
UC,UD	in P [16]	in P [16]		

Several source connectivity functions ψ appear in the literature. To avoid considering many cases, we suggest two generic types, that include previous particular cases.

Definition 1.1. An integer set-function f on a groundset U is **submodular** if $f(A) + f(B) \ge f(A \cap B) + f(A \cup B)$ for all $A, B \subseteq U$, and f is **non-decreasing** if $f(A) \le f(B)$ for all $A \subseteq B \subseteq U$.

Definition 1.2. Let G = (V, E) be a graph with node capacities $\{q_u : u \in V\}$. For $S \subseteq V$ and $v \in V$ the (S, v)-*q*-connectivity $\lambda_G^q(S, v)$ is the maximum number of edge-disjoint paths from $S \setminus \{v\}$ to v in G such that every node $u \in V$ is an internal node in at most q_u paths. Given **connectivity bonuses** $\{p_u \ge q_u : u \in V\}$, the (S, v)-(p, q)-connectivity $\lambda_G^{p,q}(S, v)$ is defined by: $\lambda_G^{p,q}(S, v) = p_v + \lambda_G^q(S, v)$ if $v \in S$, and $\lambda_G^{p,q}(S, v) = \lambda_G^q(S, v)$ otherwise.

We will say that a source connectivity function $\psi(S, v)$ is **submodular** if for every $v \in V$ the function $f_v(S) = \psi(S, v)$ is submodular and non-decreasing; $\psi(S, v)$ is **survivable** if it is of the type $\psi(S, v) = \lambda_G^{p,q}(S, v)$. The concept of *q*-connectivity is essentially "mixed connectivity" (the case $q_u \in \{0, k\}$) introduced by Frank, Ibaraki, and Nagamochi [5], while (p, q)-connectivity combines it with the connectivity function introduced recently by Fukunaga [7] (the case $q \equiv 1$). The case of arbitrary node capacities includes additional connectivity versions compared to [7], e.g., the edge-connectivity case.

It is not hard to see that every survivable source connectivity function $\psi(S, v)$ is submodular (see Section 4), but the inverse is not true in general. This gives only two types of SL problems.

Submodular SL: The connectivity function $\psi(S, v)$ is submodular. Survivable SL: The connectivity function $\psi(S, v)$ is survivable.

We list four source connectivity functions that appear in the literature. All of them are submodular, and three of them are also survivable. Given an SL instance let $k = \max_{v \in V} d_v$ denote the maximum demand, and in the case of Survivable SL let $p^* = \max_{u \in V} p_u$ denote the maximum connectivity bonus and $q^* = \min_{u \in V} q_u$ denote the minimum node capacity. In what follows assume that $1 \le q_u \le p_u \le k$ for all $u \in V$, and thus $1 \le p^* \le k$ and $1 \le q^* \le k$ holds.

- 1. λ -SL: $\lambda_G(S, v)$ is the maximum number of pairwise edge-disjoint (S, v)-paths if $v \notin S$ and $\lambda_G(S, v) = \infty$ otherwise. This is Survivable SL with $p_u = q_u = k$ for every $u \in V$.
- 2. κ -SL: $\kappa(S, v)$ is the maximum number of (S, v)-paths no two of which have a common node in $V \setminus (S \cup v)$ if $v \notin S$, and $\kappa(S, v) = \infty$ otherwise.
- 3. $\hat{\kappa}$ -SL: $\hat{\kappa}(S, v)$ is the maximum number of (S, v)-paths no two of which have a common node in $V \setminus \{v\}$ if $v \notin S$, and $\hat{\kappa}(S, v) = \infty$ otherwise.

This is Survivable SL with $p_u = k$ and $q_u = 1$ for every $u \in V$.

4. κ' -SL: $\kappa'(S, v) = \hat{\kappa}(S, v)$ if $v \notin S$ and $\kappa'(S, v) = p_v + \hat{\kappa}(S \setminus \{v\}, v)$ if $v \in S$. This is Survivable SL with $q_u = 1$ for every $u \in V$.

The known approximability status of SL problems with source connectivity functions λ , κ , $\hat{\kappa}$, κ' , is summarized in Table 1; see also a survey in [15]. The approximability of λ , κ , $\hat{\kappa}$ -SL problems was settled to $O(\ln d(V))$ in [20] (where $d(V) = \sum_{v \in V} d_v$), while Fukunaga [7] showed that undirected κ' -SL admits ratio $O(k \ln k)$. We prove the following.

Download English Version:

https://daneshyari.com/en/article/4952104

Download Persian Version:

https://daneshyari.com/article/4952104

Daneshyari.com