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Transitive reductions and minimal equivalent subgraphs have proven to be a powerful 
concept to simplify networks and to measure their redundancy. Here we consider a 
generalization of the minimal equivalent subgraph problem where a set of arcs is already 
given. For two digraphs D = (V , A), D ′ = (V , A′) with A′ ⊆ A, we ask for the minimal set 
of edges of D that have to be added to D ′ such that the transitive closure of D equals the 
transitive closure of D ′.
We present a method to compute such an extension and show that if D is transitively 
closed, this problem can be solved in the same asymptotic time as computing a transitive 
reduction of D .

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In bioinformatics, but also in many other fields, we are interested in measuring the amount of information obtained by 
some data analysis method. For example in the case of flux coupling analysis (FCA) [1], this data is provided as a preordered 
set. A preordered set (V , →) is a set V with a binary relation → that satisfies

• a → a for all a ∈ V (reflexive)
• if a → b, b → c for a, b, c ∈ V , then a → c (transitive).

We can model (V , →) also with a directed graph (digraph) D = (V , A) that satisfies for all a, b ∈ V

a → b ⇔ there exists a directed path from a to b in D.

We call D transitively closed, if

a → b ⇔ (a,b) ∈ A ∀a,b ∈ V ,a 	= b.

The transitive closure 〈D〉 = (V , B) of a digraph D = (V , A) is the smallest transitively closed digraph that models the 
same preordered set as D .
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Fig. 1. Example why f (D, D ′) = f (D, ∅) − f (D ′, ∅) does not always hold. The set D ′ is drawn with continuous edges, while D also contains the dashed 
edge.

A trivial method to measure the information (not in an information theoretic sense) in a preordered set would be to 
count the number of pairs that are related, i.e. |A| for a transitively closed digraph D = (V , A) that models the preordered 
set. However, this has the disadvantage that, as soon as one piece of additional information (one arc) is added, due to the 
transitivity of the relation many other additional arcs are also induced.

A more robust way to measure the information in a preordered set is to compute a transitive reduction resp. a minimal 
equivalent subgraph.

A transitive reduction of a digraph D = (V , A) is defined to be a smallest digraph Dmin = (V , Amin) that models the same 
preordered set as D [2]. Similarly, a minimal equivalent subgraph of a digraph D = (V , A) is defined to be a smallest digraph 
Dmin = (V , Amin) with Amin ⊆ A that models the same preordered set as D [3]. We observe that these two notions are 
equivalent if D is transitively closed.

It is easy to see that if one additional arc (one piece of information) is added, the size of Amin will increase by at 
most 1. In this paper, we now address the question of how the additional information of a digraph D compared to a smaller 
digraph D ′ can be measured and computed.

Therefore, we define in Sec. 2 the minimal extension from D ′ to D as the minimal number of arcs from D that need to 
be added to D ′ such that the transitive closure of D ′ is the same as the transitive closure of D . We then discuss in Sec. 3
how the problem can be reduced to the case where D is acyclic and to the case where D is strongly connected. We further 
show structural properties that are then used in Sec. 4 to present an efficient algorithm to compute minimal extensions 
when D is transitively closed.

We write V 2 := V × V to denote the set of ordered 2-tuples of a set V . Furthermore, we write D|X for digraphs 
D = (V , A) to denote the induced subgraph (X, X2 ∩ A). We define the complete digraph on V as G = (V , A) with A =
V 2 \ {(v, v) : v ∈ V }. In the following we always assume that D is simple, i.e. that it does not contain loops and parallel 
edges must have different orientation.

2. Minimal extensions

For digraphs D = (V , A), D ′ = (V , A′) with A′ ⊆ A we define f (D, D ′) as the minimum number of arcs from D that 
have to be added to D ′ so that the transitive closures become the same. Formally,

f (D, D ′) := min
E⊆A

{|E| : 〈D〉 = 〈
(V , A′ ∪ E)

〉}
.

We call a minimizer E ⊆ A a minimal extension. A set E ⊆ A with 〈D〉 = 〈
(V , A′ ∪ E)

〉
is called an extension.

We observe that for a digraph D , f (D, ∅) gives the size of a minimum equivalent subgraph. Computing f (D, ∅) is NP-
hard by reduction from the Hamilton-Cycle problem [3]. If, however, D is transitively closed, this corresponds to computing 
the transitive reduction of D , which can be done in polynomial time [2].

We note that in general f (D, D ′) 	= f (D, ∅) − f (D ′, ∅), see Fig. 1 for an example. There, D = ({A, B, C}, {1, 2, 3}) and 
D ′ = ({A, B, C}, {2, 3}). Then f (D, ∅) = 2 (the set {1, 2}), f (D ′, ∅) = 2 (the set {2, 3}), but f (D, D ′) = 1 (the set {1}).

Since computing f (D, D ′) is NP-hard in general, we discuss in Sec. 4 algorithms to efficiently compute f (〈D〉 , D ′). This 
is analogous to computing the transitive reduction instead of the minimal equivalent subgraph of D .

3. Structural properties of minimal extensions

We now discuss structural properties that will help us compute f (D, D ′) for digraphs D = (V , A), D ′ = (V , A′) with 
A′ ⊆ A. Let C ⊆ 2V be the set of maximal strongly connected components (represented as the corresponding sets of vertices) 
of D .

A main simplification is obtained by contracting strongly connected components. This leaves us with a directed acyclic 
graph (DAG) on which the minimal extension problem is easy (see Observation 1). We therefore define the component 
graphs D̃, D̃ ′ , where the strongly connected components of D are contracted to single nodes (see Fig. 2 for an example):

(C, Ã) = D̃ := D/C

(C, Ã′) = D̃ ′ := D ′/C,

where for graphs G = (W , B) and partitions P of W we define
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