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Edge-independent spanning trees (EISTs) have important applications in networks such as 
reliable communication protocols, one-to-all broadcasting, and secure message distribution, 
thus their designs in several classes of networks have been widely investigated. The 
n-dimensional augmented cube (A Q n) is an important variant of the n-dimensional 
hypercube. It is (2n − 1)-regular, (2n − 1)-connected (n �= 3), vertex-symmetric and has 
diameter of �n/2�. In this paper, by proposing an O (N log N) algorithm that constructs 
2n − 1 EISTs in A Q n, where N is the number of nodes in A Q n, we solve the EISTs problem 
for this class of graphs. Since A Q n is (2n − 1)-regular, the result is optimal with respect to 
the number of EISTs constructed.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

A subgraph T of G is a spanning tree of G if T is a tree and V (T ) = V (G). Two spanning trees T and T ′ of G are 
edge-independent if T and T ′ are rooted at the same vertex, say r, and for each vertex v ( �= r) in G , the two paths from r
to v , one path in each tree, share no common direct edges [10]. A set of spanning trees of G are called edge-independent 
spanning trees (EISTs as short) if they are pairwise edge-independent.

The EISTs problem is to construct a set of pairwise edge-independent spanning trees in a given graph. Because EISTs have 
wide applications in networks such as reliable communication protocols [1,2,14], one-to-all broadcasting [22], and secure 
message distribution [1,20], the EISTs problem has received much attention in recent years. For example, fault tolerance 
can be achieved by sending n copies of a message along n EISTs rooted at the source node. If the source node is faultless, 
then this scheme can tolerate up to n − 1 faulty nodes. On the other hand, by separating a message at the source node 
into several parts and sending different parts of the message safely from the source node to multiple destination nodes via 
EISTs, every destination node can correctly obtain its own part of the message and keep the message secret from all other 
nodes in the transmission path.

Although the EISTs problem is very tough for arbitrary graph, several results are known for some special classes of graphs, 
such as planar graphs [13], even graphs [15], hypercubes [19,21,28], locally twisted cubes [6,11,16], folded hypercubes [25], 
crossed cubes [4,8], enhanced hypercubes [26], Möbius cubes [7,29], twisted cube [24], recursive circulant graphs [27], parity 
cubes [5,23] and so forth.

It is well known that hypercube is one of the most popular topologies used in parallel systems because of its simple 
and symmetrical structure. To improve the efficiency, many variants of hypercube have been proposed, e.g., crossed cubes, 
Möbius cubes, locally twisted cubes, and so on. The diameter of several variants is about half of that of the n-dimensional 
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Fig. 1. Augmented cubes of dimensions 1, 2 and 3.

hypercube for a sufficient large integer n, however some of these cubes lose vertex-symmetry, making communication and 
computation on them vertex-specific.

As an important variant of hypercube, the augmented cube is proposed by Choudum and Sunitha in [9]. The 
n-dimensional augmented cube (A Q n) is (2n − 1)-regular, (2n − 1)-connected (n �= 3) and vertex-symmetric. A Q n not only 
keeps the favorable properties of the n-dimensional hypercube (Q n) since Q n is a subgraph of A Q n , but also processes some 
properties that Q n does not have. For example, the diameter of A Q n is �n/2� [9], almost halved Q n ’s. A Q n contains cycles 
of all lengths from 3 to 2n, whereas Q n contains only even cycles. Moreover, A Q n is (2n − 3)-edge-fault-tolerant pancyclic 
(n ≥ 2) [17]. For n ≥ 4, A Q n is (2n − 3)-fault-tolerant hamiltonian, (2n − 4)-fault-tolerant hamiltonian connected [12]. The 
super vertex-connectivity of A Q n is 4n − 8 for n ≥ 6 and the super edge-connectivity is 4n − 4 for n ≥ 5 [18].

In this paper, we give an O (N log N) algorithm that constructs 2n − 1 EISTs in n-dimensional augmented cubes, where N
is the number of nodes in A Q n , thereby solving the EISTs problem for this class of graphs. Since A Q n is (2n − 1)-regular, 
the number of EISTs constructed is maximum.

The rest of this paper is organized as follows. Section 2 introduces relevant notations and definitions. Then, Section 3
gives the algorithm for constructing 2n − 1 EISTs in A Q n and shows the correctness. Finally, we give some concluding 
remarks in Section 4.

2. Preliminaries

Let G = (V , E) be a simple graph, where V (G) is the node set and E(G) is the edge set. If (x, y) ∈ E(G), we say x is 
adjacent to y. In this paper, we may use x −→ y to denote (x, y). A neighbor of a node x is any node adjacent to x. If 
V ′ ⊆ V (G), the subgraph of G induced by V ′ is denoted by G[V ′]. For a tree T rooted at a vertex r, we use root(T ) to 
denote r and the parent of a vertex v ( �= r) in T is denoted by parent(v, T ). We denote by T (x, y) the unique path from 
x to y in T . A binary string u of length n is denoted by un−1un−2 . . . u1u0. For 0 ≤ i ≤ n − 1, we use ui = 1 − ui to denote 
the complement of ui . A graph G1 is isomorphic to another graph G2 (denoted by G1 ∼= G2) if and only if there exists a 
bijection f : V (G1) → V (G2) such that for any two vertices u, v ∈ V (G1), (u, v) ∈ E(G1) if and only if ( f (u), f (v)) ∈ E(G2).

In what follows, we formally introduce the definition of augmented cubes. The n-dimensional augmented cube denoted 
by A Q n can be recursively defined as below [9].

Definition 1. Let n ≥ 1. The n-dimensional augmented cube A Q n has 2n vertices, each labeled by an n-bit binary string. 
(1) A Q 1 = K2. (2) For n ≥ 2, A Q n is obtained by taking two copies of augmented cube A Q n−1, denoted by A Q 0

n−1 and 
A Q 1

n−1, and adding 2 × 2n−1 edges between the two as follows. Let V (A Q i
n−1) = {ix|x ∈ V (A Q n−1)} (i = 0, 1). A vertex u =

0un−2un−3 . . . u0 ∈ V (A Q 0
n−1) is adjacent to a vertex v = 1vn−2 vn−3 . . . v0 ∈ V (A Q 1

n−1) if and only if for every 0 ≤ i ≤ n − 2, 
one of the following two conditions holds: (a) ui = vi . In this case, the edge (u,v) is called a hypercube edge; (b) ui = vi . In 
this case, the edge (u,v) is called a complement edge.

The augmented cubes A Q 1, A Q 2 and A Q 3 are demonstrated in Fig. 1.
To expatiate the constructing rule of EISTs, we need the following notations. We first give the definition of n-dimensional 

adjacent vertex in A Q n .

Definition 2. For any integer n ≥ 1 and u = un−1un−2 . . . u1u0 ∈ V (A Q n), the k-dimensional adjacent vertex of u in A Q n
(0 ≤ k ≤ n − 1) is defined as follows. (1) If k = 0, then the 0-dimensional adjacent vertex of u in A Q n (denoted by N0(u)) 
is un−1un−2 . . . u1u0. (2) If k ≥ 1, then there are two k-dimensional adjacent vertices of u in A Q n . One is denoted by 
Nh

k (u) = un−1un−2 . . . uk . . . u1u0; the other one is denoted by Nc
k(u) = un−1un−2 . . . uk . . . u1u0. Furthermore, we use N∗

k to 
denote Nh

k or Nc
k . Moreover, we define N∗

k (S) = {N∗
k (x)|x ∈ S}, where S is a subset of V (A Q n).

Let G be a subgraph of A Q 0
k . For any vertices u, v ∈ V (G) and (u, v) ∈ E(G), since A Q 0

k
∼= A Q 1

k , Nh
k (u) must be adjacent 

to Nh
k (v). Then we define Nh

k (G) as the corresponding subgraph of G in A Q 1
k , where V (Nh

k (G)) = {Nh
k (x)|x ∈ V (G)} and 

E(Nh
k (G)) = {(Nh

k (u), Nh
k (v))|(u, v) ∈ E(G)}. It is easy to prove the following lemma.
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