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We characterize the symbolical dynamical systems which are topologically isomorphic to 
the Fibonacci dynamical system. We prove that there are infinitely many injective primitive 
substitutions generating a dynamical system in the Fibonacci conjugacy class. In this class 
there are infinitely many dynamical systems not generated by a substitution. An example 
is the system generated by doubling the 0’s in the infinite Fibonacci word.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

We study the Fibonacci substitution ϕ given by

ϕ : 0 → 01, 1 → 0.

The infinite Fibonacci word wF is the unique one-sided sequence (to the right) which is a fixed point of ϕ:

wF = 0100101001 . . . .

We also consider one of the two two-sided fixed points xF of ϕ2:

xF = . . . 01001001·0100101001 . . . .

The dynamical system generated by taking the orbit closure of xF under the shift map σ is denoted by (Xϕ, σ).
The question we will be concerned with is: what are the substitutions η which generate a symbolic dynamical system 

topologically isomorphic to the Fibonacci dynamical system? Here topologically isomorphic means that there exists a homeo-
morphism ψ : Xϕ → Xη , such that ψσ = σψ , where we denote the shift on Xη also by σ . In this case (Xη, σ) is said to be 
conjugate to (Xϕ, σ).

This question has been completely answered for the case of constant length substitutions in the paper [2]. It is remark-
able that there are only finitely many injective primitive substitutions of length L which generate a system conjugate to a 
given substitution of length L. Here a substitution α is called injective if α(a) �= α(b) for all letters a and b from the al-
phabet with a �= b. When we extend to the class of all substitutions, replacing L by the Perron–Frobenius eigenvalue of the 
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incidence matrix of the substitution, then the conjugacy class can be infinite in general. See [5] for the case of the Thue–
Morse substitution. In the present paper we will prove that there are infinitely many injective primitive substitutions with 
Perron–Frobenius eigenvalue � = (1 + √

5)/2 which generate a system conjugate to the Fibonacci system—see Theorem 5.1.
In the non-constant length case some new phenomena appear. If one has an injective substitution α of constant length L, 

then all its powers αn will also be injective. This is no longer true in the general case. For example, consider the injective 
substitution ζ on the alphabet {1, 2, 3, 4, 5} given by

ζ : 1 → 12, 2 → 3, 3 → 45, 4 → 1, 5 → 23.

An application of Theorem 2.1 followed by a partition reshaping (see Section 4) shows that the system (Xζ , σ) is conjugate 
to the Fibonacci system. However, the square of ζ is given by

ζ 2 : 1 → 123, 2 → 45, 3 → 123, 4 → 12, 5 → 345,

which is not injective. To deal with this undesirable phenomenon we introduce the following notion. A substitution α
is called a full rank substitution if its incidence matrix has full rank (non-zero determinant). This is a strengthening of 
injectivity, because obviously a substitution which is not injective can not have full rank. Moreover, if the substitution α has 
full rank, then all its powers αn will also have full rank, and thus will be injective.

Another phenomenon, which does not exist in the constant length case, is that non-primitive substitutions ζ may gen-
erate uniquely defined minimal systems conjugate to a given system. For example, consider the injective substitution ζ on 
the alphabet {1, 2, 3, 4} given by

ζ : 1 → 12, 2 → 31, 3 → 4, 4 → 3.

With the partition reshaping technique from Section 4 one can show that the system (Xζ , σ) is conjugate to the Fibonacci 
system (ignoring the system on two points generated by ζ ). In the remainder of this paper we concentrate on primitive 
substitutions.

The structure of the paper is as follows. In Section 2 we show that all systems in the conjugacy class of the Fibonacci 
substitution can be obtained by letter-to-letter projections of the systems generated by so-called N-block substitutions. 
In Section 3 we give a very general characterization of symbolical dynamical systems in the Fibonacci conjugacy class, 
in the spirit of a similar result on the Toeplitz dynamical system in [4]. In Section 4 we introduce a tool which admits 
to turn non-injective substitutions into injective substitutions. This is used in Section 5 to show that the Fibonacci class 
has infinitely many primitive injective substitutions as members. In Section 6 we quickly analyze the case of a 2-symbol 
alphabet. Sections 7 and 8 give properties of equicontinuous factors and incidence matrices, which are used to analyze the 
3-symbol case in Section 9. In the final Section 10 we show that the system obtained by doubling the 0’s in the infinite 
Fibonacci word is conjugate to the Fibonacci dynamical system, but can not be generated by a substitution.

2. N-block systems and N-block substitutions

For any N the N-block substitution θ̂N of a substitution θ is defined on an alphabet of pθ (N) symbols, where pθ (·) is the 
complexity function of the language Lθ of θ (cf. [11, p. 95]). What is not in [11], is that this N-block substitution generates 
the N-block presentation of the system (Xθ , σ).

We denote the letters of the alphabet of the N-block presentation by [a1a2 . . .aN ], where a1a2 . . .aN is an element from 
LN

θ , the set of words of length N in the language of θ . The N-block presentation (X [N]
θ , σ) emerges by applying an sliding 

block code 
 to the sequences of Xθ , so 
 is the map


(a1a2 . . .aN) = [a1a2 . . .aN ].
We denote by ψ the induced map from Xθ to X [N]

θ :

ψ(x) = . . .
(x−N , . . . , x−1)
(x−N+1, . . . , x0) . . . .

It is easy to see that ψ is a conjugacy, where the inverse is π0 induced by the 1-block map (also denoted π0) given by 
π0([a1a2 . . .aN ]) = a1.

The N-block substitution θ̂N is defined by requiring that for each word a1a2 . . .aN the length of θ̂N ([a1a2 . . .aN ]) is equal 
to the length L1 of θ(a1), and the letters of θ̂N ([a1a2 . . .aN ]) are the 
-codings of the first L1 consecutive N-blocks in 
θ(a1a2 . . .aN).

Theorem 2.1. Let θ̂N be the N-block substitution of a primitive substitution θ . Let (X [N]
θ , σ) be the N-block presentation of the system 

(Xθ , σ). Then X [N]
θ = X

θ̂N
.

Proof. Let x be a fixed point of θ , and let y = ψ(x), where ψ is the N-block conjugacy, with inverse π0. The key equation 
is π0 θ̂N = θ π0. This implies
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