On the conjugacy class of the Fibonacci dynamical system

F. Michel Dekking ${ }^{\text {a,* }}$, Michael S. Keane ${ }^{\text {a,b }}$
${ }^{a}$ DIAM, Delft University of Technology, Faculty EEMCS, P.O. Box 5031, 2600 GA Delft, The Netherlands
${ }^{\mathrm{b}}$ New York University Shanghai, China

A R T I C L E IN F O

Article history:

Received 17 August 2016
Received in revised form 14 December 2016
Accepted 12 January 2017
Available online xxxx
Communicated by J. Karhumäki

Keywords:

Fibonacci word
Automatic sequences
Topological conjugacy
Symbolic dynamical system

Abstract

We characterize the symbolical dynamical systems which are topologically isomorphic to the Fibonacci dynamical system. We prove that there are infinitely many injective primitive substitutions generating a dynamical system in the Fibonacci conjugacy class. In this class there are infinitely many dynamical systems not generated by a substitution. An example is the system generated by doubling the 0's in the infinite Fibonacci word.

(C) 2017 Elsevier B.V. All rights reserved.

1. Introduction

We study the Fibonacci substitution φ given by

$$
\varphi: \quad 0 \rightarrow 01,1 \rightarrow 0
$$

The infinite Fibonacci word w_{F} is the unique one-sided sequence (to the right) which is a fixed point of φ :

$$
w_{\mathrm{F}}=0100101001 \ldots
$$

We also consider one of the two two-sided fixed points x_{F} of φ^{2} :

$$
x_{\mathrm{F}}=\ldots 01001001 \cdot 0100101001 \ldots .
$$

The dynamical system generated by taking the orbit closure of x_{F} under the shift map σ is denoted by (X_{φ}, σ).
The question we will be concerned with is: what are the substitutions η which generate a symbolic dynamical system topologically isomorphic to the Fibonacci dynamical system? Here topologically isomorphic means that there exists a homeomorphism $\psi: X_{\varphi} \rightarrow X_{\eta}$, such that $\psi \sigma=\sigma \psi$, where we denote the shift on X_{η} also by σ. In this case (X_{η}, σ) is said to be conjugate to $\left(X_{\varphi}, \sigma\right)$.

This question has been completely answered for the case of constant length substitutions in the paper [2]. It is remarkable that there are only finitely many injective primitive substitutions of length L which generate a system conjugate to a given substitution of length L. Here a substitution α is called injective if $\alpha(a) \neq \alpha(b)$ for all letters a and b from the alphabet with $a \neq b$. When we extend to the class of all substitutions, replacing L by the Perron-Frobenius eigenvalue of the

[^0]incidence matrix of the substitution, then the conjugacy class can be infinite in general. See [5] for the case of the ThueMorse substitution. In the present paper we will prove that there are infinitely many injective primitive substitutions with Perron-Frobenius eigenvalue $\Phi=(1+\sqrt{5}) / 2$ which generate a system conjugate to the Fibonacci system-see Theorem 5.1.

In the non-constant length case some new phenomena appear. If one has an injective substitution α of constant length L, then all its powers α^{n} will also be injective. This is no longer true in the general case. For example, consider the injective substitution ζ on the alphabet $\{1,2,3,4,5\}$ given by

$$
\zeta: \quad 1 \rightarrow 12,2 \rightarrow 3,3 \rightarrow 45,4 \rightarrow 1,5 \rightarrow 23 .
$$

An application of Theorem 2.1 followed by a partition reshaping (see Section 4) shows that the system (X_{ζ}, σ) is conjugate to the Fibonacci system. However, the square of ζ is given by

$$
\zeta^{2}: \quad 1 \rightarrow 123,2 \rightarrow 45,3 \rightarrow 123,4 \rightarrow 12,5 \rightarrow 345
$$

which is not injective. To deal with this undesirable phenomenon we introduce the following notion. A substitution α is called a full rank substitution if its incidence matrix has full rank (non-zero determinant). This is a strengthening of injectivity, because obviously a substitution which is not injective can not have full rank. Moreover, if the substitution α has full rank, then all its powers α^{n} will also have full rank, and thus will be injective.

Another phenomenon, which does not exist in the constant length case, is that non-primitive substitutions ζ may generate uniquely defined minimal systems conjugate to a given system. For example, consider the injective substitution ζ on the alphabet $\{1,2,3,4\}$ given by

$$
\zeta: \quad 1 \rightarrow 12, \quad 2 \rightarrow 31, \quad 3 \rightarrow 4, \quad 4 \rightarrow 3
$$

With the partition reshaping technique from Section 4 one can show that the system (X_{ζ}, σ) is conjugate to the Fibonacci system (ignoring the system on two points generated by ζ). In the remainder of this paper we concentrate on primitive substitutions.

The structure of the paper is as follows. In Section 2 we show that all systems in the conjugacy class of the Fibonacci substitution can be obtained by letter-to-letter projections of the systems generated by so-called N-block substitutions. In Section 3 we give a very general characterization of symbolical dynamical systems in the Fibonacci conjugacy class, in the spirit of a similar result on the Toeplitz dynamical system in [4]. In Section 4 we introduce a tool which admits to turn non-injective substitutions into injective substitutions. This is used in Section 5 to show that the Fibonacci class has infinitely many primitive injective substitutions as members. In Section 6 we quickly analyze the case of a 2 -symbol alphabet. Sections 7 and 8 give properties of equicontinuous factors and incidence matrices, which are used to analyze the 3 -symbol case in Section 9. In the final Section 10 we show that the system obtained by doubling the 0 's in the infinite Fibonacci word is conjugate to the Fibonacci dynamical system, but can not be generated by a substitution.

2. N-block systems and N-block substitutions

For any N the N-block substitution $\hat{\theta}_{N}$ of a substitution θ is defined on an alphabet of $p_{\theta}(N)$ symbols, where $p_{\theta}(\cdot)$ is the complexity function of the language \mathcal{L}_{θ} of θ (cf. [11, p. 95]). What is not in [11], is that this N-block substitution generates the N-block presentation of the system $\left(X_{\theta}, \sigma\right)$.

We denote the letters of the alphabet of the N-block presentation by $\left[a_{1} a_{2} \ldots a_{N}\right.$], where $a_{1} a_{2} \ldots a_{N}$ is an element from \mathcal{L}_{θ}^{N}, the set of words of length N in the language of θ. The N-block presentation $\left(X_{\theta}^{[N]}, \sigma\right)$ emerges by applying an sliding block code Ψ to the sequences of X_{θ}, so Ψ is the map

$$
\Psi\left(a_{1} a_{2} \ldots a_{N}\right)=\left[a_{1} a_{2} \ldots a_{N}\right]
$$

We denote by ψ the induced map from X_{θ} to $X_{\theta}^{[N]}$:

$$
\psi(x)=\ldots \Psi\left(x_{-N}, \ldots, x_{-1}\right) \Psi\left(x_{-N+1}, \ldots, x_{0}\right) \ldots
$$

It is easy to see that ψ is a conjugacy, where the inverse is π_{0} induced by the 1 -block map (also denoted π_{0}) given by $\pi_{0}\left(\left[a_{1} a_{2} \ldots a_{N}\right]\right)=a_{1}$.

The N-block substitution $\hat{\theta}_{N}$ is defined by requiring that for each word $a_{1} a_{2} \ldots a_{N}$ the length of $\hat{\theta}_{N}\left(\left[a_{1} a_{2} \ldots a_{N}\right]\right)$ is equal to the length L_{1} of $\theta\left(a_{1}\right)$, and the letters of $\hat{\theta}_{N}\left(\left[a_{1} a_{2} \ldots a_{N}\right]\right)$ are the Ψ-codings of the first L_{1} consecutive N-blocks in $\theta\left(a_{1} a_{2} \ldots a_{N}\right)$.

Theorem 2.1. Let $\hat{\theta}_{N}$ be the N-block substitution of a primitive substitution θ. Let $\left(X_{\theta}^{[N]}, \sigma\right)$ be the N-block presentation of the system $\left(X_{\theta}, \sigma\right)$. Then $X_{\theta}^{[N]}=X_{\hat{\theta}_{N}}$.

Proof. Let x be a fixed point of θ, and let $y=\psi(x)$, where ψ is the N-block conjugacy, with inverse π_{0}. The key equation is $\pi_{0} \hat{\theta}_{N}=\theta \pi_{0}$. This implies

https://daneshyari.com/en/article/4952216

Download Persian Version:

https://daneshyari.com/article/4952216

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: F.M.Dekking@TUDelft.nl (F.M. Dekking).
 http://dx.doi.org/10.1016/j.tcs.2017.01.009
 0304-3975/© 2017 Elsevier B.V. All rights reserved.

