
Applied Soft Computing 29 (2015) 26–39

Contents lists available at ScienceDirect

Applied Soft Computing

j ourna l ho me page: www.elsev ier .com/ locate /asoc

An initial industrial evaluation of interactive search-based testing for
embedded software

Bogdan Marculescua,∗, Robert Feldta, Richard Torkara,b, Simon Pouldinga

a Blekinge Institute of Technology, Karlskrona, Sweden
b Chalmers and the University of Gothenburg, Gothenburg, Sweden

a r t i c l e i n f o

Article history:
Received 7 February 2014
Received in revised form 4 December 2014
Accepted 16 December 2014
Available online 25 December 2014

Keywords:
Search-based software testing
Interactive search-based software
engineering
User centered
Embedded software
Industrial experience

a b s t r a c t

Search-based software testing promises the ability to generate and evaluate large numbers of test cases
at minimal cost. From an industrial perspective, this could enable an increase in product quality without
a matching increase in the time and effort required to do so.

Search-based software testing, however, is a set of quite complex techniques and approaches that do
not immediately translate into a process for use with most companies.

For example, even if engineers receive the proper education and training in these new approaches, it
can be hard to develop a general fitness function that covers all contingencies. Furthermore, in industrial
practice, the knowledge and experience of domain specialists are often key for effective testing and thus
for the overall quality of the final software system. But it is not clear how such domain expertise can be
utilized in a search-based system.

This paper presents an interactive search-based software testing (ISBST) system designed to operate
in an industrial setting and with the explicit aim of requiring only limited expertise in software testing. It
uses SBST to search for test cases for an industrial software module, while also allowing domain specialists
to use their experience and intuition to interactively guide the search.

In addition to presenting the system, this paper reports on an evaluation of the system in a company
developing a framework for embedded software controllers. A sequence of workshops provided regular
feedback and validation for the design and improvement of the ISBST system. Once developed, the ISBST
system was evaluated by four electrical and system engineers from the company (the ‘domain specialists’
in this context) used the system to develop test cases for a commonly used controller module. As well as
evaluating the utility of the ISBST system, the study generated interaction data that were used in subse-
quent laboratory experimentation to validate the underlying search-based algorithm in the presence of
realistic, but repeatable, interactions.

The results validate the importance that automated software testing tools in general, and search-
based tools, in particular, can leverage input from domain specialists while generating tests. Furthermore,
the evaluation highlighted benefits of using such an approach to explore areas that the current testing
practices do not cover or cover insufficiently.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Software, especially embedded software, is an essential part of
a variety of complex systems that are used in many domains. The
companies developing such systems focus their core competen-
cies on domain specific knowledge and experience, rather than
software engineering and software testing. As a result, they often

∗ Corresponding author. Tel.: +46 734223506.
E-mail addresses: marculescu.bogdan@gmail.com, bogdan.marculescu@bth.se

(B. Marculescu).

lack the expertise to perform systematic software testing and qual-
ity assurance, focusing instead on testing the product as a whole.
Since the quality of the developed products depends on a series
of trade-offs, software quality assurance is often not a priority
concern. Developing in-house software expertise is prohibitively
expensive and companies often prefer to focus their resources on
improving domain specific competitive advantages.1

1 We will use the phrase ‘domain specialists’ to describe system engineers and
other specialists who use, develop and test software, even though their focus is
firmly on their particular domain.

http://dx.doi.org/10.1016/j.asoc.2014.12.025
1568-4946/© 2014 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.asoc.2014.12.025
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2014.12.025&domain=pdf
mailto:marculescu.bogdan@gmail.com
mailto:bogdan.marculescu@bth.se
dx.doi.org/10.1016/j.asoc.2014.12.025

B. Marculescu et al. / Applied Soft Computing 29 (2015) 26–39 27

It therefore becomes important to enable domain specialists to
improve the quality of the software they develop, without shif-
ting their focus away from their primary concerns. This could be
achieved by developing a pre-packaged software testing toolkit
that would offer the best practices in software development with-
out the need to master the details behind the tool. This concept
is sound, but developing such a package before the specifics of
the application become known is a difficult task. Moreover, the
functionality of the applications and the ways they are tested may
change, or may differ between different testers and domain spe-
cialists involved, further emphasizing the importance of being able
to use domain knowledge as an integral part of the testing process
and have a flexible tool that can adapt to different scenarios and
types of usage.

This paper proposes a system for testing embedded software
by applying a technique that largely automates the generation
of test data while still enabling domain specialists to contribute
their knowledge and experience, thus allowing them to focus on
domain-specific concerns. The automated technique applied uses
a metaheuristic optimization algorithm to generate the test data
and thus is a form of search-based software testing [1,2]. The
domain specialist interacts with the system to guide the optimiza-
tion algorithm in the generation of test cases that are appropriate
in a given context. This interaction is inspired by existing work
in interactive evolutionary computation [3–7], and is designed to
make it easy for the domain specialist to make their contribution,
while shielding them from the implementation details of the tool
itself.

The contributions of this paper are as follows:

• A proposal that search-based software testing may be combined
with user interaction with the objective of permitting test cases to
be generated efficiently by users who are not necessarily testing
experts.

• A description of how this proposal was implemented as
an interactive search-based software testing (ISBST) system
during a case study in collaboration with an industrial
partner.

• An industrial evaluation demonstrating that the ISBST sys-
tem can be successfully used by domain specialists to
develop test cases without requiring extensive training in
its use.

• A laboratory experiment that validates the contribution of the
underlying search-based test generation algorithm. This exper-
iment compares the effect of the algorithm in the context of
different interaction strategies that are based on data gathered
during the industrial evaluation.

In Section 2, we consider existing approaches to interactive evo-
lutionary search, and discuss how our approach differs from them.
Section 3 is an overview of the industrial case study, and Section 4
describes the ISBST system developed during the study. Section 5
describes an evaluation of the system by users from our industrial
partner. A laboratory experiment motivated by the results of the
evaluation is described in Section 6. The results of the industrial
evaluation and laboratory experiment are discussed in Section 7.
Threats to validity are discussed in Section 8. Section 9 concludes
the paper.

2. Related work

Search-based software engineering (SBSE) is a term coined
by Harman and Jones in 2001 [8] to describe the application
of metaheuristic optimization (or ‘search’) algorithms to soft-
ware engineering problems, see e.g. [3,9,10]. The branch of SBSE

concerned with testing problems is known as search-based soft-
ware testing (SBST) and has been applied to many types of testing
problems [1,2], from object-oriented containers [11] to dynamic
programming languages [12].

The premise of SBSE is that for many software engineering prob-
lems it is difficult to derive a solution directly, but it is often easy
to check whether a given ‘candidate’ solution solves the problem.
In the context of SBST, the problem is typically to derive test data
that satisfies a specific testing objective: while it may be difficult
to derive a suitable test case, if we are given a candidate test case
it is usually straightforward to check whether it meets the test-
ing objective. If a fitness function can be defined that measures the
extent to which the candidate solution solves the problem, then
it is possible to use this fitness function to guide a metaheuristic
optimization algorithm toward solutions that solve the problem.
Even though the optimization algorithm may need to construct
and evaluate a large number of candidate solutions to find one that
solves the problem, this approach is often less costly than solving
the same engineering problem manually. Many metaheuristic opti-
mization algorithms operate on a population, i.e. a set of individual
candidate solutions, and such an algorithm is used in the ISBST sys-
tem described in this paper. For this reason, we will use the terms
‘candidate solution’, ‘candidate’, and ‘individual’ interchangeably
to refer to a potential solution developed by a search-based sys-
tem.

There have been comparatively few studies considering interac-
tive SBSE or SBST. Feldt [5] described an interactive development
environment where tests are created as the engineer writes the
program code or refines the specification. The system used the
interactions of the engineer to help guide the search but the
effect on the fitness function was indirect. Other work by Feldt
[3], and by Parmee et al. [13], considered the use of interac-
tive search to explore engineering designs and better understand
design constraints but did not focus directly on software test-
ing.

Nevertheless, the notion of interactive involvement in a search
process is well-established. Takagi describes interactive evolution-
ary computation (IEC) as “an EC that optimizes systems based on
subjective human evaluation” [4]. This approach uses the human
as a replacement fitness function in situations where the optimiza-
tion goal is dependent on “human preference, intuition, emotion
and psychological aspects” [4]; this includes applications such
as arts and animation, computer generated graphics and image
processing.

Takagi [4] also identifies three main approaches to human inter-
action with an evolutionary computation (EC) system. First, the
human can act as a regular fitness function: the human is pre-
sented a set of candidates and must assign a fitness score to each
of them. This means that each candidate must be analyzed and
evaluated.

The second approach is to present the human with the can-
didates to be evaluated; the human then chooses those that are
remarkable, either selecting the ‘good’ candidates for promotion
to the next generation or selecting the ‘bad’ ones for exclusion.
Only a subset of candidates need to be marked, ranked or graded,
in this approach. This helps guide the search by ensuring that
desired characteristics are always represented in the population
and have a higher chance of propagating to the next generation.
In effect, the user guides the search by selecting those candi-
dates deemed to be the “best current representation of the goal”
[14].

The third approach identified is that of Visualized EC, where
the human selects a solution based on the fitness values for sev-
eral objectives, rather than analyzing the individual candidates
themselves. The approach is described in more detail in [15]. One
such example is presented by Bavota et al. [16], where a candidate

Download English Version:

https://daneshyari.com/en/article/495225

Download Persian Version:

https://daneshyari.com/article/495225

Daneshyari.com

https://daneshyari.com/en/article/495225
https://daneshyari.com/article/495225
https://daneshyari.com

