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In this paper we focus on the decomposition of rational and maximal prefix codes. 
We present an effective procedure that allows us to decide whether such a code is 
decomposable. In this case, the procedure also produces the factors of some of its 
decompositions. We also give partial results on the problem of deciding whether a rational 
maximal prefix code decomposes over a finite prefix code.

© 2015 Published by Elsevier B.V.

1. Introduction

The origin of the theory of (uniquely decipherable) codes can be found in the early works of Shannon in the 1950’s and 
an algebraic theory of codes was later initiated by Schützenberger, using noncommutative algebra as a tool for studying 
them [15]. This paper follows Schützenberger’s approach according to which a variable-length code X is the base of a free 
submonoid of A∗ [3,15].

The aim of the theory of codes is to give a structural description of codes in a way that allows their construction. This 
is easily accomplished for prefix codes, i.e., codes such that none of their words is a left factor of another, and for the 
symmetrical class of suffix codes. A classical representation of a finite prefix code X over an alphabet A is as a set of leaves 
on a tree.

Despite their simplicity, they play an important role in the theory of codes. Most of the interesting problems on codes 
can be raised for prefix codes or are related with them. In the context of formal language theory, they also intervene in a 
decomposition algorithm for rational sets (see Theorem 4.4.1 in [6]).

There are some basic problems on prefix codes that are still unsolved. For instance, we still do not know how to decide 
whether a rational maximal prefix code decomposes over a finite prefix code. A prefix code X ⊆ A∗ is maximal over A if it 
is not properly contained in any other prefix code over A.

Composition is a partially binary operation on codes. It stimulated deep interest at the beginning of the theory since it 
was conjectured that any code could be obtained by composition of prefix and suffix codes. This conjecture was false but 
other interesting questions related to this operation are still open (see [3,9,10]). The investigation of a class of codes is often 
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accompanied with the study of the behavior of the class with respect to this operation and with respect to the converse 
notion of decomposition. Indeed, if a code X decomposes over two codes Y and Z , then these codes are generally simpler. It 
is worth noting that the terms “composition” and “decomposition” are used with a completely different meaning in [5,7,14], 
where they are referred to rational operations on rational languages.

In this paper we focus on the decomposition of rational and maximal prefix codes. Of course, there are several known 
results on this topic, which is presented here systematically for the first time. Our approach takes into account the minimal 
automaton A = (Q , 1, 1) recognizing X∗ , where X is a rational maximal prefix code. We introduce the definition of bal-
anced state and of unbalanced state. This definition applies to a state different from 1 and plays a fundamental role in our 
investigation.

We present an effective procedure that, when applied to A, allows us to decide whether a rational and maximal prefix 
code X is decomposable. In this case, the procedure also produces the factors of some of the decompositions of X . This 
procedure applies to special languages associated with states q in A. The definition of such languages and the actions of 
the procedure depend on whether q is a balanced or an unbalanced state.

We introduce two extremal classes of rational maximal prefix codes, the class of balanced codes (all states different from 
1 are balanced) and the class of strongly unbalanced codes (all states different from 1 are unbalanced). The former is a rather 
large class, including rational maximal bifix codes (codes which are both prefix and suffix) and indecomposable rational 
maximal prefix codes. The latter turns out to coincide with the class of (1, 0)-limited codes [3]. We give a sufficient condition 
for a balanced code to decompose over a finite maximal prefix code. We prove that we may decide whether a rational and 
maximal bifix code decomposes over a finite (bifix) maximal code. Finally, we prove that any strongly unbalanced code 
decomposes over a finite maximal prefix code.

This paper is the sequel of an investigation initiated in [13]. A part of the material underlying our constructions is already 
in the above paper but it is here thoroughly developed. Some of our complementary results are already in [13] but they are 
stated here with different and easier proofs.

The paper is organized as follows. In Section 2, we set up the basic definitions and known results we need. Section 3
contains a brief presentation of the problems we deal with in this paper. In Section 4 we give the definitions of balanced 
state and unbalanced state. Our procedure is described in Section 4.1 for balanced states and in Section 4.2 for unbalanced 
states. Section 5 deals with the family of balanced codes, whereas strongly unbalanced codes are investigated in Section 6. 
We end this paper with Section 7, where we discuss some main issues that follow on from the results.

2. Basics

2.1. Codes and words

A main reference for this section is [3]. Let A∗ be the free monoid generated by an alphabet A and let A+ = A∗ \ 1 where 
1 is the empty word. For a word w ∈ A∗ and a letter a ∈ A, we denote by |w| the length of w . A word x ∈ A∗ is a factor
of w ∈ A∗ if there are u1, u2 ∈ A∗ such that w = u1xu2 and x is a proper factor of w if u1u2 �= 1. Furthermore, x is a prefix
(resp. suffix) of w if u1 = 1 (resp. u2 = 1) and x is a proper prefix (resp. proper suffix) of w if u2 �= 1 = u1 (resp. u1 �= 1 = u2). 
In the latter case, we say that x and w are prefix-comparable (resp. suffix-comparable). Then, x is prefix-comparable with y
if x is a proper prefix of y or y is a proper prefix of x.

A set X ⊆ A∗ is rational if it is accepted by a finite automaton. It is thin if there is a word of A∗ which is not a factor of 
X . Rational languages will be also represented at times by means of rational expressions.

A code X is a subset of A∗ such that, for all h, k ≥ 0 and c1, . . . , ch, c′
1, . . . , c

′
k ∈ X , we have

c1 · · · ch = c′
1 · · · c′

k ⇒ h = k and ci = c′
i for i = 1, . . . ,h.

Any rational code is thin. A set X ⊆ A+ is a prefix code if no word in X is prefix-comparable with another word in X , that 
is, X ∩ X A+ = ∅. X is a suffix code if X ∩ A+ X = ∅ and X is a bifix code when X is both a suffix and a prefix code. A code X
is a maximal code over A if for each code Y over A such that X ⊆ Y we have X = Y . A prefix (resp. bifix) code is maximal 
over A if it is not properly contained in any other prefix (resp. bifix) subset of A∗ . For a thin prefix (resp. bifix) code, the 
two above conditions are equivalent, thus thin maximal prefix (resp. bifix) codes are maximal codes. A submonoid M of A∗
is right unitary if for all u, v ∈ A∗

u, uv ∈ M ⇒ v ∈ M.

Left unitary monoids are symmetrically defined. A submonoid M of A∗ is right (resp. left) unitary if and only if its minimal 
set of generators is a prefix (resp. suffix) code. We recall that, given a set Z ⊆ A+ , there exists a smallest right unitary 
submonoid S(Z) of A∗ containing Z [2]. It can be constructed as follows. Define a sequence (Sn)n≥0 of subsets of A∗ by 
setting

S0 = Z∗, Sn+1 = (S−1
n Sn)

∗

Then, the following result has been stated in [2].
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