Efficient computation of the characteristic polynomial of a threshold graph

Martin Fürer
Department of Computer Science and Engineering, Pennsylvania State University, University Park, PA 16802, USA

A R T I C L E IN F O

Article history:

Received 26 October 2015
Received in revised form 11 July 2016
Accepted 13 July 2016
Available online xxxx

Keywords:

Efficient algorithms
Threshold graphs
Characteristic polynomial

Abstract

An efficient algorithm is presented to compute the characteristic polynomial of a threshold graph. Threshold graphs were introduced by Chvátal and Hammer, as well as by Henderson and Zalcstein in 1977. A threshold graph is obtained from a one vertex graph by repeatedly adding either an isolated vertex or a dominating vertex, which is a vertex adjacent to all the other vertices. Threshold graphs are special kinds of cographs, which themselves are special kinds of graphs of clique-width 2 . We obtain a running time of $O\left(n \log ^{2} n\right)$ for computing the characteristic polynomial, while the previously fastest algorithm ran in quadratic time. We improve the running time drastically in the case where there is a small number of alternations between 0 's and 1 's in the sequence defining a threshold graph.

(C) 2016 Published by Elsevier B.V.

1. Introduction

The characteristic polynomial of a graph $G=(V, E)$ is defined as the characteristic polynomial of its adjacency matrix A, i.e., $\chi(G, \lambda)=\operatorname{det}(\lambda I-A)$. The characteristic polynomial is a graph invariant, i.e., it does not depend on the enumeration of the vertices of G. The complexity of computing the characteristic polynomial of a matrix is the same as that of matrix multiplication [16,19] (see [3, Chap. 16]), which has recently improved from $O\left(n^{2.37548}\right)$ [6] to $O\left(n^{2.37369}\right)$ [7,29] and $O\left(n^{2.37287}\right)$ [11]. For special classes of graphs, we expect to find faster algorithms for the characteristic polynomial. Indeed, for trees, a chain of improvements [27,18] resulted in an $O\left(n \log ^{2} n\right)$ time algorithm [10]. The determinant and rank of the adjacency matrix of a tree can even be computed in linear time [8]. For threshold graphs (defined below), Jacobs et al. [14] have recently designed an $O\left(n^{2}\right)$ time algorithm to compute the characteristic polynomial. Here, we improve the running time to $O\left(n \log ^{2} n\right)$. As usual, we use the algebraic complexity measure, where every arithmetic operation counts as one step. Throughout this paper, $n=|V|$ is the number of vertices of G.

Threshold graphs [5,12] are defined as follows. Given n and a sequence $b=\left(b_{1}, \ldots, b_{n-1}\right) \in\{0,1\}^{n-1}$, the threshold graph $G_{b}=(V, E)$ is defined by $V=[n]=\{1, \ldots, n\}$, and for all $i<j,\{i, j\} \in E$ if and only if $b_{i}=1$. Thus G_{b} is constructed by an iterative process starting with the initially isolated vertex n. In step $j>1$, vertex $n-j+1$ is added. At this time, vertex j is isolated if b_{j} is 0 , and vertex j is adjacent to all other (already constructed) vertices $\{j+1, \ldots, n\}$ if $b_{j}=1$. It follows immediately that G_{b} is isomorphic to $G_{b^{\prime}}$ if and only if $b=b^{\prime} . G_{b}$ is connected if $b_{1}=1$, otherwise vertex 1 is isolated. An example of a threshold graph is given in Fig. 1. Usually, the order of the vertices being added is $1,2, \ldots, n$ instead of $n, n-1, \ldots, 1$. We choose this unconventional order to simplify our main algorithm.

Threshold graphs have been widely studied and have several applications from combinatorics to computer science and psychology [17]. The index of a graph is its largest eigenvalue. Threshold graphs play an important role in the search for

[^0]http://dx.doi.org/10.1016/j.tcs.2016.07.013
0304-3975/© 2016 Published by Elsevier B.V.

Fig. 1. The threshold graph defined by the sequence $b=\left(b_{1}, \ldots, b_{7}\right)=(1,1,0,1,1,0,0)$ in our notation. In standard notation, vertex j would be numbered $9-j$.
graphs of maximal index among all connected graphs with a given number of vertices and edges [24,25]. Threshold graphs have been called nested split graphs by some authors [24-26].

In Section 2, we study determinants of weighted threshold graph matrices, a class of matrices containing adjacency matrices of threshold graphs. We also produce recurrence equations for the determinant of a weighted threshold graph matrix. In Section 3, we design our efficient algorithm to compute the characteristic polynomial of threshold graphs and determine its complexity. A refined complexity analysis is given in Section 4 in dependence of the number of alternations. We also look at its bit complexity in Section 5, and finish with open problems.

2. The determinant of a weighted threshold graph matrix

We are concerned with adjacency matrices of threshold graphs, but we consider a slightly more general class of matrices. We call them weighted threshold graph matrices. Let $M_{b_{1} b_{2} \ldots b_{n-1}}^{d_{1} d_{2} \ldots d_{n}}$ be the matrix with the following entries form \mathbb{C}.

$$
\left(M_{b_{1} b_{2} \ldots b_{n-1}}^{d_{1} d_{2} \ldots d_{n}}\right)_{i j}= \begin{cases}b_{i} & \text { if } i<j \\ b_{j} & \text { if } j<i \\ d_{i} & \text { if } i=j\end{cases}
$$

Thus, the weighted threshold graph matrix for $\left(b_{1} b_{2} \ldots b_{n-1} ; d_{1} d_{2} \ldots d_{n}\right)$ looks like this.

$$
M_{b_{1} b_{2} \ldots b_{n-1}}^{d_{1} d_{2} \ldots d_{n}}=\left(\begin{array}{cccccc}
d_{1} & b_{1} & b_{1} & \ldots & b_{1} & b_{1} \\
b_{1} & d_{2} & b_{2} & \ldots & b_{2} & b_{2} \\
b_{1} & b_{2} & d_{3} & \ldots & b_{3} & b_{3} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
b_{1} & b_{2} & b_{3} & \ldots & d_{n-1} & b_{n-1} \\
b_{1} & b_{2} & b_{3} & \ldots & b_{n-1} & d_{n}
\end{array}\right)
$$

We want to compute the determinant D_{n} of $M_{b_{1} b_{2} \ldots b_{n-1}}^{d_{1} d_{2} \ldots d_{n}}$ for $n \geq 0$. For $n=0$, it is convenient to define the determinant of the 0×0 matrix to be 1 .

Theorem 1. $D_{n}=\operatorname{det}\left(M_{b_{1} b_{2} \ldots b_{n-1}}^{d_{1} d_{2} \ldots d_{n}}\right)$ is determined by the recurrence equation

$$
D_{n}= \begin{cases}1 & \text { if } n=0 \\ d_{1} & \text { if } n=1 \\ \left(d_{n}+d_{n-1}-2 b_{n-1}\right) D_{n-1}-\left(d_{n-1}-b_{n-1}\right)^{2} D_{n-2} & \text { if } n \geq 2\end{cases}
$$

Proof. The claim is clearly correct for $n \leq 1$. In order to compute the determinant of $M_{b_{1} b_{2} \ldots b_{n-1}}^{d_{1} d_{2} \ldots d_{n}}$ for $n \geq 2$, we subtract the penultimate row from the last row and the penultimate column from the last column. In other words, we do a similarity transformation with the following regular matrix

https://daneshyari.com/en/article/4952319

Download Persian Version:

https://daneshyari.com/article/4952319

Daneshyari.com

[^0]: E-mail address: furer@cse.psu.edu.

