An FPTAS for the parallel two-stage flowshop problem

Jianming Dong ${ }^{\text {a, } 1}$, Weitian Tong ${ }^{\text {b,c, }}$, Taibo Luo ${ }^{\text {d,b, }}$, Xueshi Wang ${ }^{\text {a }}$, Jueliang Hu^{a}, Yinfeng $\mathrm{Xu}^{\text {d,e }}$, Guohui Lin ${ }^{\mathrm{a}, \mathrm{b}, *}$
${ }^{\text {a }}$ Department of Mathematics, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
${ }^{\mathrm{b}}$ Department of Computing Science, University of Alberta, Edmonton, Alberta T6G 2E8, Canada
${ }^{\text {c }}$ Department of Computer Sciences, Georgia Southern University, Statesboro, GA 30458, USA
${ }^{\text {d }}$ Business School, Sichuan University, Chengdu, Sichuan 610065, China
e State Key Lab for Manufacturing Systems Engineering, Xi'an, Shaanxi 710049, China

ARTICLE INFO

Article history:

Received 8 September 2015
Accepted 27 April 2016
Available online 8 June 2016

Keywords:

Two-stage flowshop scheduling
Multiprocessor scheduling
Makespan
Dynamic programming
Fully polynomial-time approximation scheme

Abstract

We consider the NP-hard m-parallel two-stage flowshop problem, abbreviated as the ($m, 2$)-PFS problem, where we need to schedule n jobs to m parallel identical two-stage flowshops in order to minimize the makespan, i.e. the maximum completion time of all the jobs on the m flowshops. The ($m, 2$)-PFS problem can be decomposed into two subproblems: to assign the n jobs to the m parallel flowshops, and for each flowshop to schedule the jobs assigned to the flowshop. We first present a pseudo-polynomial time dynamic programming algorithm to solve the $(m, 2)$-PFS problem optimally, for any fixed m, based on an earlier idea for solving the $(2,2)$-PFS problem. Using the dynamic programming algorithm as a subroutine, we design a fully polynomial-time approximation scheme (FPTAS) for the ($m, 2$)-PFS problem.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the m-parallel k-stage flowshop problem, denoted as (m, k)-PFS, there are m parallel identical k-stage flowshops $F_{1}, F_{2}, \ldots, F_{m}$. Each of these classic k-stage flowshop contains exactly one machine at every stage, or equivalently k sequential machines. An input job has k tasks, and it can be assigned to one and only one of the m flowshops for processing; once it is assigned to a flowshop, its k tasks are then processed on the k sequential machines in the flowshop, respectively. Let $M_{\ell, 1}, M_{\ell, 2}, \ldots, M_{\ell, k}$ denote the k sequential machines in the flowshop F_{ℓ}, for every ℓ. Let \mathcal{J} denote a set of n input jobs $J_{1}, J_{2}, \ldots, J_{n}$. The job J_{i} is represented as a k-tuple ($p_{i, 1}, p_{i, 2}, \ldots, p_{i, k}$), where $p_{i, j}$ is the processing time for the j-th task, that is, the j-th task needs to be processed non-preemptively on the j-th machine in the flowshop to which the job J_{i} is assigned. For all $i, j, p_{i, j}$ is a non-negative integer. The objective of this problem is to minimize the makespan, that is the completion time of the last job.

Clearly, when $m=1$, the problem reduces to the classic k-stage flowshop (flowshop scheduling in [4]); when $k=1$, the problem reduces to another classic m-parallel identical machine scheduling problem (multiprocessor scheduling in [4]). When only the two-stage flowshops are involved, i.e. ($m, 2$)-PFS, the problem has been previously studied in [11,20,23].

[^0]Table 1
Known results for the hybrid k-stage flowshop problem.

		$\underline{m_{j} \text { machines in stage } j}$		
		$m_{j}=1$	m_{j} fixed	m_{j} arbitrary
k stages	$k=1$	Polynomial time	FPTAS [18]	PTAS [12]
	$k=2$	Polynomial time [15]	PTAS [10]	PTAS [19]
	$k \geq 3$ fixed	PTAS [10]	PTAS [10]	PTAS [14]
	k arbitrary	Not be approximated within 1.25 [22]		

The (m, k)-PFS problem is closely related to the well studied hybrid k-stage flowshop problem [16], which also includes the classic k-stage flowshop and the classic parallel identical machine scheduling problem as special cases. The hybrid k-stage flowshop problem is a flexible manufacturing system model, and it contains $m_{j} \geq 1$ parallel identical machines in the j-th stage, $j=1,2, \ldots, k$. The problem is abbreviated as ($m_{1}, m_{2}, \ldots, m_{k}$)-HFS. A job J_{i} is again represented as a k-tuple ($p_{i, 1}, p_{i, 2}, \ldots, p_{i, k}$), where $p_{i, j}$ is the processing time for the j-th task, that can be processed non-preemptively on any one of the m_{j} machines in the j-th stage. The objective of the ($m_{1}, m_{2}, \ldots, m_{k}$)-HFS problem is also to minimize the makespan. One clearly sees that when $m_{1}=m_{2}=\ldots=m_{k}=1$, the problem reduces to the classic k-stage flowshop problem; when $k=1$, the problem reduces to the classic m-parallel identical machine scheduling problem.

We next review some of the most important and relevant results on the k-stage flowshop problem and on the m-parallel identical machine scheduling problem. For the k-stage flowshop problem, it is known that for $k \in\{2,3\}$, there exists an optimal schedule that is a permutation schedule for which all the k machines process the jobs in the same order; but for $k \geq 4$, there may exist no optimal schedule which is a permutation schedule [3]. When $k=2$, the two-stage flowshop problem is polynomial time solvable, by Johnson's algorithm [15]; the k-stage flowshop problem becomes strongly NP-hard when $k \geq 3$ [5]. After several efforts [15,5,6,2], Hall presented a polynomial-time approximation scheme (PTAS) for the k-stage flowshop problem, for any fixed integer $k \geq 3$ [10]. Note that due to the strongly NP-hardness, a PTAS is the best possible result unless $\mathrm{P}=\mathrm{NP}$. When k is a part of input (i.e. an arbitrary integer), the problem cannot be approximated within 1.25 [22]; nevertheless, it remains unknown whether the problem can be approximated within a constant factor.

For the m-parallel identical machine scheduling problem, it is NP-hard when $m \geq 2$ [4]. When m is a fixed integer, the problem admits a pseudo-polynomial time exact algorithm [4] that can be used to construct an FPTAS [18]; when m is a part of input, the problem becomes strongly NP-hard, but admits a PTAS by Hochbaum and Shmoys [12].

The literature on the hybrid k-stage flowshop problem ($m_{1}, m_{2}, \ldots, m_{k}$)-HFS is also rich [17], especially for the hybrid two-stage flowshop problem $\left(m_{1}, m_{2}\right)$-HFS. First, $(1,1)$-HFS is the classic two-stage flowshop problem which can be solved optimally in polynomial time [15]. When $\max \left\{m_{1}, m_{2}\right\} \geq 2$, the $\left(m_{1}, m_{2}\right)$-HFS problem becomes strongly NP-hard [13]. The special cases $\left(m_{1}, 1\right)$-HFS and ($1, m_{2}$)-HFS have attracted many researchers' attention [7,9,1,8]; the interested reader might refer to [21] for a survey on the hybrid two-stage flowshop problem with a single machine in one stage.

For the general hybrid k-stage flowshop problem $\left(m_{1}, m_{2}, \ldots, m_{k}\right)$-HFS, when all the $m_{1}, m_{2}, \ldots, m_{k}$ are fixed integers, Hall claimed that the PTAS for the classic k-stage flowshop problem can be extended to a PTAS for the ($m_{1}, m_{2}, \ldots, m_{k}$)-HFS problem [10]. Later, Schuurman and Woeginger presented a PTAS for the hybrid two-stage flowshop problem (m_{1}, m_{2})-HFS, even when the numbers of machines m_{1} and m_{2} in the two stages are a part of input [19]. Jansen and Sviridenko generalized this result to the hybrid k-stage flowshop problem $\left(m_{1}, m_{2}, \ldots, m_{k}\right)$-HFS, where k is a fixed integer while $m_{1}, m_{2}, \ldots, m_{k}$ can be a part of input [14]. Due to the inapproximability of the classic k-stage flowshop problem, when k is arbitrary, the $\left(m_{1}, m_{2}, \ldots, m_{k}\right)$-HFS problem can not be approximated within 1.25 either unless $\mathrm{P}=\mathrm{NP}$ [22]. Table 1 summarizes the results we reviewed earlier. Besides, there are plenty of heuristic algorithms in the literature for the general hybrid k-stage flowshop problem, and the interested readers can refer to the survey by Ruiz et al. [17].

Compared to the rich literature on the hybrid k-stage flowshop problem, the (m, k)-PFS problem is much less studied. In fact, the general (m, k)-PFS problem is almost untouched, except only the two-stage flowshops are involved [11,20,23]. He et al. first proposed the m parallel identical two-stage flowshop problem ($m, 2$)-PFS, motivated by an application from the glass industry [11]. In their work, the ($m, 2$)-PFS problem is formulated as a mixed-integer programming and an efficient heuristics is proposed [11]. Vairaktarakis and Elhafsi [20] also studied the ($m, 2$)-PFS problem, in order to investigate the hybrid k-stage flowshop problem. Among other results, Vairaktarakis and Elhafsi observed that the (2, 2)-PFS problem can be broken down into two subproblems, a job partition problem and a classic two-stage flowshop problem [20]. Note that the second subproblem can be solved optimally by Johnson's algorithm [15]. The NP-hardness of the first subproblem [4] implies the NP-hardness of (2,2)-PFS, simply by setting all $p_{i, 2}$'s to zeros. One of the major contributions in [20] is an $O\left(n P^{3}\right)$-time dynamic programming algorithm for solving the (2,2)-PFS problem optimally, where n is the number of jobs and P is the sum of all processing times. That is, this exact algorithm runs in pseudo-polynomial time.

The NP-hardness of (2,2)-PFS implies that the general $(m, 2)$-PFS problem is NP-hard, either m is a part of input (arbitrary) or m is a fixed integer greater than one. Recently, Zhang et al. [23] studied the ($m, 2$)-PFS problem from the approximation algorithm perspective, more precisely only for the special case where $m=2$ or 3 . They designed a 3/2-approximation algorithm for the (2,2)-PFS problem and a 12/7-approximation algorithm for the (3,2)-PFS problem [23]. Both algorithms are variations of Johnson's algorithm and the main idea is first to sort all the jobs using Johnson's algorithm into a sequence, then to cut this sequence into two (three, respectively) parts for the two (three, respectively) two-stage flowshops

https://daneshyari.com/en/article/4952326

Download Persian Version:
https://daneshyari.com/article/4952326

Daneshyari.com

[^0]: * Corresponding author at: Department of Computing Science, University of Alberta, Edmonton, Alberta T6G 2E8, Canada.

 E-mail address: guohui@ualberta.ca (G. Lin).
 ${ }^{1}$ Co-first authors.

