
Theoretical Computer Science 657 (2017) 64–72

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

An FPTAS for the parallel two-stage flowshop problem

Jianming Dong a,1, Weitian Tong b,c,1, Taibo Luo d,b,1, Xueshi Wang a, 
Jueliang Hu a, Yinfeng Xu d,e, Guohui Lin a,b,∗
a Department of Mathematics, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
b Department of Computing Science, University of Alberta, Edmonton, Alberta T6G 2E8, Canada
c Department of Computer Sciences, Georgia Southern University, Statesboro, GA 30458, USA
d Business School, Sichuan University, Chengdu, Sichuan 610065, China
e State Key Lab for Manufacturing Systems Engineering, Xi’an, Shaanxi 710049, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 8 September 2015
Accepted 27 April 2016
Available online 8 June 2016

Keywords:
Two-stage flowshop scheduling
Multiprocessor scheduling
Makespan
Dynamic programming
Fully polynomial-time approximation 
scheme

We consider the NP-hard m-parallel two-stage flowshop problem, abbreviated as the 
(m, 2)-PFS problem, where we need to schedule n jobs to m parallel identical two-stage 
flowshops in order to minimize the makespan, i.e. the maximum completion time of 
all the jobs on the m flowshops. The (m, 2)-PFS problem can be decomposed into two 
subproblems: to assign the n jobs to the m parallel flowshops, and for each flowshop 
to schedule the jobs assigned to the flowshop. We first present a pseudo-polynomial 
time dynamic programming algorithm to solve the (m, 2)-PFS problem optimally, for any 
fixed m, based on an earlier idea for solving the (2, 2)-PFS problem. Using the dynamic 
programming algorithm as a subroutine, we design a fully polynomial-time approximation 
scheme (FPTAS) for the (m, 2)-PFS problem.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the m-parallel k-stage flowshop problem, denoted as (m, k)-PFS, there are m parallel identical k-stage flowshops 
F1, F2, . . . , Fm . Each of these classic k-stage flowshop contains exactly one machine at every stage, or equivalently k se-
quential machines. An input job has k tasks, and it can be assigned to one and only one of the m flowshops for processing; 
once it is assigned to a flowshop, its k tasks are then processed on the k sequential machines in the flowshop, respectively. 
Let M�,1, M�,2, . . . , M�,k denote the k sequential machines in the flowshop F� , for every �. Let J denote a set of n input 
jobs J1, J2, . . . , Jn . The job J i is represented as a k-tuple (pi,1, pi,2, . . . , pi,k), where pi, j is the processing time for the j-th 
task, that is, the j-th task needs to be processed non-preemptively on the j-th machine in the flowshop to which the job 
J i is assigned. For all i, j, pi, j is a non-negative integer. The objective of this problem is to minimize the makespan, that is 
the completion time of the last job.

Clearly, when m = 1, the problem reduces to the classic k-stage flowshop (flowshop scheduling in [4]); when k = 1, the 
problem reduces to another classic m-parallel identical machine scheduling problem (multiprocessor scheduling in [4]). When 
only the two-stage flowshops are involved, i.e. (m, 2)-PFS, the problem has been previously studied in [11,20,23].

* Corresponding author at: Department of Computing Science, University of Alberta, Edmonton, Alberta T6G 2E8, Canada.
E-mail address: guohui@ualberta.ca (G. Lin).

1 Co-first authors.

http://dx.doi.org/10.1016/j.tcs.2016.04.046
0304-3975/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2016.04.046
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:guohui@ualberta.ca
http://dx.doi.org/10.1016/j.tcs.2016.04.046
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2016.04.046&domain=pdf


J. Dong et al. / Theoretical Computer Science 657 (2017) 64–72 65

Table 1
Known results for the hybrid k-stage flowshop problem.

m j machines in stage j

m j = 1 m j fixed m j arbitrary

k stages

k = 1 Polynomial time FPTAS [18] PTAS [12]
k = 2 Polynomial time [15] PTAS [10] PTAS [19]
k ≥ 3 fixed PTAS [10] PTAS [10] PTAS [14]
k arbitrary Not be approximated within 1.25 [22]

The (m, k)-PFS problem is closely related to the well studied hybrid k-stage flowshop problem [16], which also includes 
the classic k-stage flowshop and the classic parallel identical machine scheduling problem as special cases. The hybrid 
k-stage flowshop problem is a flexible manufacturing system model, and it contains m j ≥ 1 parallel identical machines in the 
j-th stage, j = 1, 2, . . . , k. The problem is abbreviated as (m1, m2, . . . , mk)-HFS. A job J i is again represented as a k-tuple 
(pi,1, pi,2, . . . , pi,k), where pi, j is the processing time for the j-th task, that can be processed non-preemptively on any one 
of the m j machines in the j-th stage. The objective of the (m1, m2, . . . , mk)-HFS problem is also to minimize the makespan. 
One clearly sees that when m1 = m2 = . . . = mk = 1, the problem reduces to the classic k-stage flowshop problem; when 
k = 1, the problem reduces to the classic m-parallel identical machine scheduling problem.

We next review some of the most important and relevant results on the k-stage flowshop problem and on the m-parallel 
identical machine scheduling problem. For the k-stage flowshop problem, it is known that for k ∈ {2, 3}, there exists an 
optimal schedule that is a permutation schedule for which all the k machines process the jobs in the same order; but for 
k ≥ 4, there may exist no optimal schedule which is a permutation schedule [3]. When k = 2, the two-stage flowshop 
problem is polynomial time solvable, by Johnson’s algorithm [15]; the k-stage flowshop problem becomes strongly NP-hard 
when k ≥ 3 [5]. After several efforts [15,5,6,2], Hall presented a polynomial-time approximation scheme (PTAS) for the 
k-stage flowshop problem, for any fixed integer k ≥ 3 [10]. Note that due to the strongly NP-hardness, a PTAS is the best 
possible result unless P = NP. When k is a part of input (i.e. an arbitrary integer), the problem cannot be approximated 
within 1.25 [22]; nevertheless, it remains unknown whether the problem can be approximated within a constant factor.

For the m-parallel identical machine scheduling problem, it is NP-hard when m ≥ 2 [4]. When m is a fixed integer, the 
problem admits a pseudo-polynomial time exact algorithm [4] that can be used to construct an FPTAS [18]; when m is a 
part of input, the problem becomes strongly NP-hard, but admits a PTAS by Hochbaum and Shmoys [12].

The literature on the hybrid k-stage flowshop problem (m1, m2, . . . , mk)-HFS is also rich [17], especially for the hybrid 
two-stage flowshop problem (m1, m2)-HFS. First, (1, 1)-HFS is the classic two-stage flowshop problem which can be solved 
optimally in polynomial time [15]. When max{m1, m2} ≥ 2, the (m1, m2)-HFS problem becomes strongly NP-hard [13]. The 
special cases (m1, 1)-HFS and (1, m2)-HFS have attracted many researchers’ attention [7,9,1,8]; the interested reader might 
refer to [21] for a survey on the hybrid two-stage flowshop problem with a single machine in one stage.

For the general hybrid k-stage flowshop problem (m1, m2, . . . , mk)-HFS, when all the m1, m2, . . ., mk are fixed integers, 
Hall claimed that the PTAS for the classic k-stage flowshop problem can be extended to a PTAS for the (m1, m2, . . . , mk)-HFS 
problem [10]. Later, Schuurman and Woeginger presented a PTAS for the hybrid two-stage flowshop problem (m1, m2)-HFS, 
even when the numbers of machines m1 and m2 in the two stages are a part of input [19]. Jansen and Sviridenko generalized 
this result to the hybrid k-stage flowshop problem (m1, m2, . . . , mk)-HFS, where k is a fixed integer while m1, m2, . . . , mk
can be a part of input [14]. Due to the inapproximability of the classic k-stage flowshop problem, when k is arbitrary, the 
(m1, m2, . . . , mk)-HFS problem can not be approximated within 1.25 either unless P = NP [22]. Table 1 summarizes the 
results we reviewed earlier. Besides, there are plenty of heuristic algorithms in the literature for the general hybrid k-stage 
flowshop problem, and the interested readers can refer to the survey by Ruiz et al. [17].

Compared to the rich literature on the hybrid k-stage flowshop problem, the (m, k)-PFS problem is much less studied. In 
fact, the general (m, k)-PFS problem is almost untouched, except only the two-stage flowshops are involved [11,20,23]. He 
et al. first proposed the m parallel identical two-stage flowshop problem (m, 2)-PFS, motivated by an application from the 
glass industry [11]. In their work, the (m, 2)-PFS problem is formulated as a mixed-integer programming and an efficient 
heuristics is proposed [11]. Vairaktarakis and Elhafsi [20] also studied the (m, 2)-PFS problem, in order to investigate the 
hybrid k-stage flowshop problem. Among other results, Vairaktarakis and Elhafsi observed that the (2, 2)-PFS problem can 
be broken down into two subproblems, a job partition problem and a classic two-stage flowshop problem [20]. Note that 
the second subproblem can be solved optimally by Johnson’s algorithm [15]. The NP-hardness of the first subproblem [4]
implies the NP-hardness of (2, 2)-PFS, simply by setting all pi,2’s to zeros. One of the major contributions in [20] is an 
O (nP 3)-time dynamic programming algorithm for solving the (2, 2)-PFS problem optimally, where n is the number of jobs 
and P is the sum of all processing times. That is, this exact algorithm runs in pseudo-polynomial time.

The NP-hardness of (2, 2)-PFS implies that the general (m, 2)-PFS problem is NP-hard, either m is a part of input (arbi-
trary) or m is a fixed integer greater than one. Recently, Zhang et al. [23] studied the (m, 2)-PFS problem from the approxi-
mation algorithm perspective, more precisely only for the special case where m = 2 or 3. They designed a 3/2-approximation 
algorithm for the (2, 2)-PFS problem and a 12/7-approximation algorithm for the (3, 2)-PFS problem [23]. Both algorithms 
are variations of Johnson’s algorithm and the main idea is first to sort all the jobs using Johnson’s algorithm into a se-
quence, then to cut this sequence into two (three, respectively) parts for the two (three, respectively) two-stage flowshops 



Download English Version:

https://daneshyari.com/en/article/4952326

Download Persian Version:

https://daneshyari.com/article/4952326

Daneshyari.com

https://daneshyari.com/en/article/4952326
https://daneshyari.com/article/4952326
https://daneshyari.com

