ELSEVIER

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

CrossMark

An FPTAS for the parallel two-stage flowshop problem

Jianming Dong^{a,1}, Weitian Tong^{b,c,1}, Taibo Luo^{d,b,1}, Xueshi Wang^a, Jueliang Hu^a, Yinfeng Xu^{d,e}, Guohui Lin^{a,b,*}

^a Department of Mathematics, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China

^b Department of Computing Science, University of Alberta, Edmonton, Alberta T6G 2E8, Canada

^c Department of Computer Sciences, Georgia Southern University, Statesboro, GA 30458, USA

^d Business School, Sichuan University, Chengdu, Sichuan 610065, China

^e State Key Lab for Manufacturing Systems Engineering, Xi'an, Shaanxi 710049, China

ARTICLE INFO

Article history: Received 8 September 2015 Accepted 27 April 2016 Available online 8 June 2016

Keywords: Two-stage flowshop scheduling Multiprocessor scheduling Makespan Dynamic programming Fully polynomial-time approximation scheme

ABSTRACT

We consider the NP-hard *m*-parallel two-stage flowshop problem, abbreviated as the (m, 2)-PFS problem, where we need to schedule *n* jobs to *m* parallel identical two-stage flowshops in order to minimize the makespan, *i.e.* the maximum completion time of all the jobs on the *m* flowshops. The (m, 2)-PFS problem can be decomposed into two subproblems: to assign the *n* jobs to the *m* parallel flowshops, and for each flowshop to schedule the jobs assigned to the flowshop. We first present a pseudo-polynomial time dynamic programming algorithm to solve the (m, 2)-PFS problem. Using the dynamic programming algorithm as a subroutine, we design a fully polynomial-time approximation scheme (FPTAS) for the (m, 2)-PFS problem.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the *m*-parallel *k*-stage flowshop problem, denoted as (m, k)-PFS, there are *m* parallel identical *k*-stage flowshops F_1, F_2, \ldots, F_m . Each of these *classic k*-stage flowshop contains exactly one machine at every stage, or equivalently *k* sequential machines. An input job has *k* tasks, and it can be assigned to one and only one of the *m* flowshops for processing; once it is assigned to a flowshop, its *k* tasks are then processed on the *k* sequential machines in the flowshop, respectively. Let $M_{\ell,1}, M_{\ell,2}, \ldots, M_{\ell,k}$ denote the *k* sequential machines in the flowshop F_{ℓ} , for every ℓ . Let \mathcal{J} denote a set of *n* input jobs J_1, J_2, \ldots, J_n . The job J_i is represented as a *k*-tuple $(p_{i,1}, p_{i,2}, \ldots, p_{i,k})$, where $p_{i,j}$ is the processing time for the *j*-th task, that is, the *j*-th task needs to be processed non-preemptively on the *j*-th machine in the flowshop to which the job J_i is assigned. For all *i*, *j*, $p_{i,j}$ is a non-negative integer. The objective of this problem is to minimize the makespan, that is the completion time of the last job.

Clearly, when m = 1, the problem reduces to the classic *k*-stage flowshop (flowshop scheduling in [4]); when k = 1, the problem reduces to another classic *m*-parallel identical machine scheduling problem (*multiprocessor scheduling* in [4]). When only the two-stage flowshops are involved, *i.e.* (m, 2)-PFS, the problem has been previously studied in [11,20,23].

http://dx.doi.org/10.1016/j.tcs.2016.04.046 0304-3975/© 2016 Elsevier B.V. All rights reserved.

^{*} Corresponding author at: Department of Computing Science, University of Alberta, Edmonton, Alberta T6G 2E8, Canada. *E-mail address:* guohui@ualberta.ca (G. Lin).

¹ Co-first authors.

Table 1							
Known	results	for	the	hybrid	k-stage	flowshop	problem.

		m_j machines in stage j				
		$m_j = 1$	m_j fixed	m_j arbitrary		
k stages	k = 1	Polynomial time	FPTAS [18]	PTAS [12]		
	k = 2	Polynomial time [15]	PTAS [10]	PTAS [19]		
	$k \ge 3$ fixed	PTAS [10]	PTAS [10]	PTAS [14]		
	k arbitrary	Not be approximated within 1.25 [22]				

The (m, k)-PFS problem is closely related to the well studied *hybrid k-stage flowshop* problem [16], which also includes the classic *k*-stage flowshop and the classic parallel identical machine scheduling problem as special cases. The *hybrid k-stage flowshop* problem is a flexible manufacturing system model, and it contains $m_j \ge 1$ parallel identical machines in the *j*-th stage, j = 1, 2, ..., k. The problem is abbreviated as $(m_1, m_2, ..., m_k)$ -HFS. A job J_i is again represented as a *k*-tuple $(p_{i,1}, p_{i,2}, ..., p_{i,k})$, where $p_{i,j}$ is the processing time for the *j*-th task, that can be processed non-preemptively on any one of the m_j machines in the *j*-th stage. The objective of the $(m_1, m_2, ..., m_k)$ -HFS problem is also to minimize the makespan. One clearly sees that when $m_1 = m_2 = ... = m_k = 1$, the problem reduces to the classic *k*-stage flowshop problem; when k = 1, the problem reduces to the classic *m*-parallel identical machine scheduling problem.

We next review some of the most important and relevant results on the *k*-stage flowshop problem and on the *m*-parallel identical machine scheduling problem. For the *k*-stage flowshop problem, it is known that for $k \in \{2, 3\}$, there exists an optimal schedule that is a *permutation schedule* for which all the *k* machines process the jobs in the same order; but for $k \ge 4$, there may exist no optimal schedule which is a permutation schedule [3]. When k = 2, the two-stage flowshop problem is polynomial time solvable, by Johnson's algorithm [15]; the *k*-stage flowshop problem becomes *strongly* NP-hard when $k \ge 3$ [5]. After several efforts [15,5,6,2], Hall presented a polynomial-time approximation scheme (PTAS) for the *k*-stage flowshop problem, for any fixed integer $k \ge 3$ [10]. Note that due to the strongly NP-hardness, a PTAS is the best possible result unless P = NP. When *k* is a part of input (*i.e.* an arbitrary integer), the problem cannot be approximated within 1.25 [22]; nevertheless, it remains unknown whether the problem can be approximated within a constant factor.

For the *m*-parallel identical machine scheduling problem, it is NP-hard when $m \ge 2$ [4]. When *m* is a fixed integer, the problem admits a pseudo-polynomial time exact algorithm [4] that can be used to construct an FPTAS [18]; when *m* is a part of input, the problem becomes strongly NP-hard, but admits a PTAS by Hochbaum and Shmoys [12].

The literature on the hybrid k-stage flowshop problem $(m_1, m_2, ..., m_k)$ -HFS is also rich [17], especially for the hybrid two-stage flowshop problem (m_1, m_2) -HFS. First, (1, 1)-HFS is the classic two-stage flowshop problem which can be solved optimally in polynomial time [15]. When max $\{m_1, m_2\} \ge 2$, the (m_1, m_2) -HFS problem becomes strongly NP-hard [13]. The special cases $(m_1, 1)$ -HFS and $(1, m_2)$ -HFS have attracted many researchers' attention [7,9,1,8]; the interested reader might refer to [21] for a survey on the hybrid two-stage flowshop problem with a single machine in one stage.

For the general hybrid *k*-stage flowshop problem $(m_1, m_2, ..., m_k)$ -HFS, when all the $m_1, m_2, ..., m_k$ are fixed integers, Hall claimed that the PTAS for the classic *k*-stage flowshop problem can be extended to a PTAS for the $(m_1, m_2, ..., m_k)$ -HFS problem [10]. Later, Schuurman and Woeginger presented a PTAS for the hybrid two-stage flowshop problem (m_1, m_2) -HFS, even when the numbers of machines m_1 and m_2 in the two stages are a part of input [19]. Jansen and Sviridenko generalized this result to the hybrid *k*-stage flowshop problem $(m_1, m_2, ..., m_k)$ -HFS, where *k* is a fixed integer while $m_1, m_2, ..., m_k$ can be a part of input [14]. Due to the inapproximability of the classic *k*-stage flowshop problem, when *k* is arbitrary, the $(m_1, m_2, ..., m_k)$ -HFS problem can not be approximated within 1.25 either unless P = NP [22]. Table 1 summarizes the results we reviewed earlier. Besides, there are plenty of heuristic algorithms in the literature for the general hybrid *k*-stage flowshop problem, and the interested readers can refer to the survey by Ruiz et al. [17].

Compared to the rich literature on the hybrid *k*-stage flowshop problem, the (m, k)-PFS problem is much less studied. In fact, the general (m, k)-PFS problem is almost untouched, except only the two-stage flowshops are involved [11,20,23]. He et al. first proposed the *m* parallel identical two-stage flowshop problem (m, 2)-PFS, motivated by an application from the glass industry [11]. In their work, the (m, 2)-PFS problem is formulated as a mixed-integer programming and an efficient heuristics is proposed [11]. Vairaktarakis and Elhafsi [20] also studied the (m, 2)-PFS problem, in order to investigate the hybrid *k*-stage flowshop problem. Among other results, Vairaktarakis and Elhafsi observed that the (2, 2)-PFS problem can be broken down into two subproblems, a job partition problem and a classic two-stage flowshop problem [20]. Note that the second subproblem can be solved optimally by Johnson's algorithm [15]. The NP-hardness of the first subproblem [4] implies the NP-hardness of (2, 2)-PFS, simply by setting all $p_{i,2}$'s to zeros. One of the major contributions in [20] is an $O(nP^3)$ -time dynamic programming algorithm for solving the (2, 2)-PFS problem optimally, where *n* is the number of jobs and *P* is the sum of all processing times. That is, this exact algorithm runs in pseudo-polynomial time.

The NP-hardness of (2, 2)-PFS implies that the general (m, 2)-PFS problem is NP-hard, either *m* is a part of input (arbitrary) or *m* is a fixed integer greater than one. Recently, Zhang et al. [23] studied the (m, 2)-PFS problem from the approximation algorithm perspective, more precisely only for the special case where m = 2 or 3. They designed a 3/2-approximation algorithm for the (2, 2)-PFS problem and a 12/7-approximation algorithm for the (3, 2)-PFS problem [23]. Both algorithms are variations of Johnson's algorithm and the main idea is first to sort all the jobs using Johnson's algorithm into a sequence, then to cut this sequence into two (three, respectively) parts for the two (three, respectively) two-stage flowshops

Download English Version:

https://daneshyari.com/en/article/4952326

Download Persian Version:

https://daneshyari.com/article/4952326

Daneshyari.com