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We present an algorithm to solve a system of diagonal polynomial equations over finite 
fields when the number of variables is greater than some fixed polynomial of the number 
of equations whose degree depends only on the degree of the polynomial equations. Our 
algorithm works in time polynomial in the number of equations and the logarithm of the 
size of the field, whenever the degree of the polynomial equations is constant. As a conse-
quence we design polynomial time quantum algorithms for two algebraic hidden structure 
problems: for the hidden subgroup problem in certain semidirect product p-groups of con-
stant nilpotency class, and for the multi-dimensional univariate hidden polynomial graph 
problem when the degree of the polynomials is constant.1

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Finding small solutions in some well defined sense for a system of integer linear equations is an important, well studied, 
and computationally hard problem. Subset Sum, which asks the solvability of a single equation in the binary domain is one 
of Karp’s original 21 NP-complete problems [18].

The guarantees of many lattice based cryptographic systems come from the average case hardness of Short Integer Solution, 
dating back to Ajtai’s breakthrough work [2], where we try to find short nonzero vectors in a random integer lattice. Indeed, 
this problem has a remarkable worst case versus average case hardness property: solving it on the average is at least as 
hard as solving various lattice problems in the worst case, such as the decision version of the shortest vector problem, and 
finding short linearly independent vectors.

Turning back to binary solutions, deciding if there exists a nontrivial zero-one solution of the system of linear equations

a11 y1 + . . . + a1n yn = 0
...

...
...

am1 y1 + . . . + amn yn = 0

(1)
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1 An extended abstract reporting on preliminary versions of the results of this paper has appeared in [16].
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in the finite field Fq , where q is a power of some prime number p, is easy when q = p = 2. However, by modifying the 
standard reduction of Satisfiability to Subset Sum [27] it can be shown that it is an NP-hard problem for q ≥ 3.

The system (1) is equivalent to the system of equations

a11xq−1
1 + . . . + a1nxq−1

n = 0
...

...
...

am1xq−1
1 + . . . + amnxq−1

n = 0

(2)

where we look for a nontrivial solution in the whole Fn
q .

In this paper we will consider finding a nonzero solution for a system of diagonal polynomial equations similar to (2), 
but where more generally, the variables are raised to some power d ≥ 2. We state formally this problem.

Definition 1. The System of Diagonal Equations problem SDE is parametrized by a finite field Fq and three positive integers n, 
m and d.

SDE(Fq, n, m, d)

Input: A system of polynomial equations over Fq:

a11xd
1 + . . . + a1nxd

n = 0
...

...
...

am1xd
1 + . . . + amnxd

n = 0

(3)

Output: A nonzero solution (x1, . . . , xn) �= −→
0 .

Here 
−→
0 stands for the zero vector of length n. (We will use this notation where we want to stress the distinction 

between the zero element of a field and the zero vector of a vector space.)
For j = 1, . . . , n, let us denote by v j the column vector (a1 j, . . . , amj)

T ∈ F
m
q . Then the system of equations (3) is the 

same as

n∑
j=1

xd
j v j = −→

0 . (4)

That is, solving SDE(Fq, n, m, d) is equivalent to the task of representing the zero vector as a nontrivial linear combination 
of a subset of {v1, . . . , vn} with dth power coefficients. We present our algorithm actually as solving this vector problem. 
The special case d = q − 1 is the vector zero sum problem where the goal is to find a non-empty subset of the given vectors 
with zero sum.

Under which conditions can we be sure that for system (3) there exists a nonzero solution? The elegant result of Cheval-
ley [6] and Warning [29] states that the number of solutions of a general (not necessary diagonal) system of polynomial 
equations is a multiple of the characteristic p of Fq , whenever the number of variables is greater than the sum of the 
degrees of the polynomials. For diagonal systems (3) this means that when n > dm, the existence of a nonzero solution is 
assured.

In general little is known about the complexity of finding another solution, given a solution of a system which satisfies 
the Chevalley–Warning condition. When q = 2, Papadimitriou has shown [22] that this problem is in the complexity class 
Polynomial Parity Argument (PPA), the class of NP search problems where the existence of the solution is guaranteed by 
the fact that in every finite graph the number of vertices with odd degree is even. This implies that it cannot be NP-hard 
unless NP = co-NP. It is also unlikely that the problem is in P since Alon has shown [3] that this would imply that there 
are no one-way permutations.

Let us come back to our special system of equations (3). In the case m = 1, a nonzero solution can be found in polynomial 
time for a single equation which satisfies the Chevalley condition due to the remarkable work of van de Woestijne [28]
where he proves the following.

Fact 2. In deterministic polynomial time in d and log q we can find a nontrivial solution for

a1xd
1 + . . . + ad+1xd

d+1 = 0.

In the case of more than one equation we don’t know how to find a nonzero solution for system (3) under just the 
Chevalley condition. However, if we relax the problem, and take much more variables than are required for the existence of 
a nonzero solution, we are able to give a polynomial time solution. Using van de Woestijne’s result for the one dimensional 
case, a simple recursion based on reducing one big system with m equations into d + 1 subsystems with m − 1 equations 
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