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A dissociation set in a graph G = (V , E) is a vertex subset D such that the subgraph 
G[D] induced on D has vertex degree at most 1. A 3-path vertex cover in a graph is a 
vertex subset C such that every path of three vertices contains at least one vertex from C . 
A vertex set D is a dissociation set if and only if V \ D is a 3-path vertex cover. There are 
many applications for dissociation sets and 3-path vertex covers. However, it is NP-hard to 
compute a dissociation set of maximum size or a 3-path vertex cover of minimum size in 
graphs. Several exact algorithms have been proposed for these two problems and they can 
be solved in O ∗(1.4658n) time in n-vertex graphs. In this paper, we reveal some interesting 
structural properties of the two problems, which allow us to solve them in O ∗(1.4656n)

time and polynomial space or O ∗(1.3659n) time and exponential space.
© 2016 Elsevier B.V. All rights reserved.

1. Introduction

A subset of vertices in a graph is called a dissociation set if it induces a subgraph with vertex degree at most 1. The 
maximum size of a dissociation set is called the dissociation number of the graph. To compute a dissociation set of max-
imum size or the dissociation number is NP-hard even in bipartite graphs or planar graphs [26]. The complexity of this 
problem in more restricted graph classes has been studied. It remains NP-hard even in C4-free bipartite graphs with vertex 
degree at most 3 [3]. But it is polynomially solvable in trees and some other graph classes [1–3,5,6,9,12,16–18]. Comput-
ing the dissociation number can be helpful in finding a lower bound for the 1-improper chromatic number of a graph; 
see [11]. In fact, dissociation set generalizes two other important concepts in graphs: independent set [23] and induced 
matching [25]. The Maximum Dissociation Set problem, to find a maximum dissociation set is also a special case of the
Maximum Bounded-Degree-d problem [7], in which we are finding a maximum induced subgraph with degree bounded 
by d. The dual problem of Maximum Dissociation Set is known as the Minimum 3-path Vertex Cover problem. A vertex 
subset C is called a 3-path vertex cover if every path of three vertices in a graph contains at least one vertex from C and
Minimum 3-path Vertex Cover is to find a 3-path vertex cover of minimum size. There are also some applications for Min-

imum 3-path Vertex Cover [5,13]. It remains NP-hard to compute a special 3-path vertex cover C such that the degree of 
the induced graph G[C] is bounded by any constant d0 ≥ 0 [24]. A more general problem, to find a minimum p-path vertex 
cover has been considered in the literature [4,5].

Maximum Dissociation Set and Minimum 3-path Vertex Cover have been studied in approximation algorithms, parame-
terized algorithms and exact algorithms. For Minimum 3-path Vertex Cover, there is a randomized approximation algorithm 
with an expected approximation ratio of 23

11 [13]. For the problem parameterized by the size k of 3-path vertex cover, it is 
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fixed parameter tractable. The running time bound has been improved by several times recently [21,22,14]. The current best 
result is O ∗(1.8172k) by Katrenič [14]. On the other hand, it is hard to compute a dissociation set of size at least k in approx-
imation and parameterized algorithms. No approximation algorithms with constant ratio exist under some assumption [17]. 
It is W[1]-hard to find a 2-plex of size k in a graph [15], which implies the W[1]-hardness of our problem parameterized by 
the size k of the dissociation set. In terms of exact algorithms, it does not make sense to distinguish these two problems. 
Kardoš et al. [13] gave an O ∗(1.5171n)-time algorithm to compute a maximum dissociation set in an n-vertex graph. Chang 
et al. [7] improved the result to O ∗(1.4658n). Their algorithm was analyzed by the measure-and-conquer method. Although 
many fastest exact algorithms are obtained via the measure-and-conquer method, this paper will not use this technique and 
turn back to a normal measure. The reason is that if we use the measure-and-conquer method by setting different weights 
to vertices, we may not be able to use dynamic programming to further improve the time complexity to O ∗(1.3659n). It is 
also surprising that our polynomial-space algorithm using normal measure runs in O ∗(1.4656n) time, even faster than the 
O ∗(1.4658n)-time algorithm analyzed by the measure-and-conquer method [7]. Our improvement relies on new structural 
properties developed in this paper.

The organization of this paper is as follows: Section 2 collects some technical preliminaries and some basic definitions 
that will be used in this paper. Section 3 introduces some structure properties. Section 4 discusses the main algorithm and 
analyzes its running time bound. Section 5 discusses how to reduce the time complexity via dynamic programming. In the 
end of this paper, some concluding remarks are given.

2. Preliminaries

We let G = (V , E) denote a simple and undirected graph with n = |V | vertices and m = |E| edges. A singleton {v} may 
be simply denoted by v . The vertex set and edge set of a graph G ′ are denoted by V (G ′) and E(G ′), respectively. For a 
subgraph (resp., a vertex subset) X , the subgraph induced by V (X) (resp., X) is simply denoted by G[X], and G[V \ V (X)]
(resp., G[V \ X]) is also written as G \ X . A vertex in a subgraph or a vertex subset X is also called a X-vertex. For a vertex 
subset X , let N(X) denote the set of open neighbors of X , i.e., the vertices in V \ X adjacent to some vertex in X , and N[X]
denote the set of closed neighbors of X , i.e., N(X) ∪ X . Let N2(v) denote the set of vertices with distance exactly 2 from v . 
The degree of a vertex v in a graph G , denoted by d(v), is defined to be the number of neighbors of v in G . We also use 
dX (v) to denote the number of neighbors of v in a subgraph X . A vertex v is dominated by a neighbor u of it if v is adjacent 
to all neighbors of u. A vertex s ∈ N2(v) is called a satellite of v if there is a neighbor ps of v such that N[ps] − N[v] = {s}. 
The vertex ps is also called a parent of the satellite s at v . If there is a neighbor u of v such that |N[u] − N[v]| = 2, then 
any vertex in N[u] − N[v] is a tw-satellite of v , the two tw-satellites in N[u] − N[v] are twins, and u is a parent of the 
tw-satellites at v . The set of all tw-satellites of a vertex v is denoted by T v . A vertex subset V ′ is called a dissociation set
of a graph if the induced graph G[V ′] has maximum degree 1. In fact, in this paper, we will consider a general version of
Maximum Dissociation Set, in which a specified vertex subset S is given and we are going to find a maximum dissociation 
set containing S . See the following definition.

Generalized Maximum Dissociation Set (MDS)
Input: A undirected graph G = (V , E) and a vertex subset S ⊂ V .
Output: A vertex set D ⊇ S of maximum cardinality such that D is a dissociation set of G .

Our algorithm is a branch-and-search algorithm. In this kind of algorithms, we recursively branch on the current instance 
into several smaller instances to search for a solution. Assume we use w as the measure to evaluate the size of an instance, 
where w can be the number of vertices in a graph for graph problems. Let C(w) denote the maximum number of leaves in 
the search tree generated by the algorithm for any instance with measure at most w . If a branch generates l branches and 
the measure in the i-th branch decreases by at least ai , then the branch creates a recurrence

C(w) ≤ C(w − a1) + C(w − a2) + · · · + C(w − al).

The largest root of the function f (x) = 1 − ∑l
i=1 x−ai is called the branching factor of the recurrence. The running time 

of the algorithm can be bounded by O ∗(γ n), where γ is the maximum branching factor among all branching factors in 
the algorithm. More details about the analysis can be found in the monograph [8]. Note that we will use a modified 
O -notation that suppresses all polynomially bounded factors. For two functions f and g , we write f (n) = O ∗(g(n)) if 
f (n) = O (g(n)ply(n)) for some polynomial function ply(n).

The simplest branching rule in our algorithm is

(B1): Branching on a vertex v ∈ V \ S to generate two instances by either including v to S or deleting v from the graph directly.

This rule is not often used, because for most cases it is not effective. Indeed, some of previous papers [13,14] use the 
following branching rule
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